30 Regular expressions library [re]

30.1 General [re.general]

This Clause describes components that C++ programs may use to perform operations involving regular expression matching and searching.
The following subclauses describe a basic regular expression class template and its traits that can handle char-like template arguments, two specializations of this class template that handle sequences of char and wchar_­t, a class template that holds the result of a regular expression match, a series of algorithms that allow a character sequence to be operated upon by a regular expression, and two iterator types for enumerating regular expression matches, as summarized in Table 134.
Table 134: Regular expressions library summary   [tab:re.summary]
Subclause
Header
Definitions
Requirements
Constants
<regex>
Exception type
Traits
Regular expression template
Submatches
Match results
Algorithms
Iterators
Grammar

30.2 Definitions [re.def]

The following definitions shall apply to this Clause:

30.2.1[defns.regex.collating.element]collating element

a sequence of one or more characters within the current locale that collate as if they were a single character.

30.2.2[defns.regex.finite.state.machine]finite state machine

an unspecified data structure that is used to represent a regular expression, and which permits efficient matches against the regular expression to be obtained.

30.2.3[defns.regex.format.specifier]format specifier

a sequence of one or more characters that is to be replaced with some part of a regular expression match.

30.2.4[defns.regex.matched]matched

a sequence of zero or more characters is matched by a regular expression when the characters in the sequence correspond to a sequence of characters defined by the pattern.

30.2.5[defns.regex.primary.equivalence.class]primary equivalence class

a set of one or more characters which share the same primary sort key: that is the sort key weighting that depends only upon character shape, and not accents, case, or locale specific tailorings.

30.2.6[defns.regex.regular.expression]regular expression

a pattern that selects specific strings from a set of character strings.

30.2.7[defns.regex.subexpression]sub-expression

a subset of a regular expression that has been marked by parenthesis.

30.3 Requirements [re.req]

This subclause defines requirements on classes representing regular expression traits.
[Note
:
The class template regex_­traits, defined in [re.traits], meets these requirements.
— end note
]
The class template basic_­regex, defined in [re.regex], needs a set of related types and functions to complete the definition of its semantics.
These types and functions are provided as a set of member typedef-names and functions in the template parameter traits used by the basic_­regex class template.
This subclause defines the semantics of these members.
To specialize class template basic_­regex for a character container CharT and its related regular expression traits class Traits, use basic_­regex<CharT, Traits>.
In Table 135 X denotes a traits class defining types and functions for the character container type charT; u is an object of type X; v is an object of type const X; p is a value of type const charT*; I1 and I2 are input iterators; F1 and F2 are forward iterators; c is a value of type const charT; s is an object of type X​::​string_­type; cs is an object of type const X​::​string_­type; b is a value of type bool; I is a value of type int; cl is an object of type X​::​char_­class_­type, and loc is an object of type X​::​locale_­type.
Table 135: Regular expression traits class requirements   [tab:re.req]
Expression
Return type
Assertion/note pre-/post-condition
X​::​char_­type
charT
The character container type used in the implementation of class template basic_­regex.
X​::​string_­type
basic_­string<charT>
X​::​locale_­type
A copy constructible type
A type that represents the locale used by the traits class.
X​::​char_­class_­type
A bitmask type representing a particular character classification.
X​::​length(p)
size_­t
Yields the smallest i such that p[i] == 0.
Complexity is linear in i .
v.translate(c)
X​::​char_­type
Returns a character such that for any character d that is to be considered equivalent to c then v.translate(c) == v.translate(d).
v.translate_­nocase(c)
X​::​char_­type
For all characters C that are to be considered equivalent to c when comparisons are to be performed without regard to case, then v.translate_­nocase(c) == v.translate_­nocase(C).
v.transform(F1, F2)
X​::​string_­type
Returns a sort key for the character sequence designated by the iterator range [F1, F2) such that if the character sequence [G1, G2) sorts before the character sequence [H1, H2) then v.transform(G1, G2) < v.transform(H1, H2).
v.transform_­primary(F1, F2)
X​::​string_­type
Returns a sort key for the character sequence designated by the iterator range [F1, F2) such that if the character sequence [G1, G2) sorts before the character sequence [H1, H2) when character case is not considered then v.transform_­primary(G1, G2) < v.transform_­primary(H1, H2).
v.lookup_­collatename(F1, F2)
X​::​string_­type
Returns a sequence of characters that represents the collating element consisting of the character sequence designated by the iterator range [F1, F2).
Returns an empty string if the character sequence is not a valid collating element.
v.lookup_­classname(F1, F2, b)
X​::​char_­class_­type
Converts the character sequence designated by the iterator range [F1, F2) into a value of a bitmask type that can subsequently be passed to isctype.
Values returned from lookup_­classname can be bitwise OR'ed together; the resulting value represents membership in either of the corresponding character classes.
If b is true, the returned bitmask is suitable for matching characters without regard to their case.
Returns 0 if the character sequence is not the name of a character class recognized by X.
The value returned shall be independent of the case of the characters in the sequence.
v.isctype(c, cl)
bool
Returns true if character c is a member of one of the character classes designated by cl, false otherwise.
v.value(c, I)
int
Returns the value represented by the digit c in base I if the character c is a valid digit in base I; otherwise returns -1.
[Note
:
The value of I will only be 8, 10, or 16.
— end note
]
u.imbue(loc)
X​::​locale_­type
Imbues u with the locale loc and returns the previous locale used by u if any.
v.getloc()
X​::​locale_­type
Returns the current locale used by v, if any.
[Note
:
Class template regex_­traits meets the requirements for a regular expression traits class when it is specialized for char or wchar_­t.
This class template is described in the header <regex>, and is described in [re.traits].
— end note
]

30.4 Header <regex> synopsis [re.syn]

#include <compare>              // see [compare.syn]
#include <initializer_list>     // see [initializer.list.syn]

namespace std {
  // [re.const], regex constants
  namespace regex_constants {
    using syntax_option_type = T1;
    using match_flag_type = T2;
    using error_type = T3;
  }

  // [re.badexp], class regex_­error
  class regex_error;

  // [re.traits], class template regex_­traits
  template<class charT> struct regex_traits;

  // [re.regex], class template basic_­regex
  template<class charT, class traits = regex_traits<charT>> class basic_regex;

  using regex  = basic_regex<char>;
  using wregex = basic_regex<wchar_t>;

  // [re.regex.swap], basic_­regex swap
  template<class charT, class traits>
    void swap(basic_regex<charT, traits>& e1, basic_regex<charT, traits>& e2);

  // [re.submatch], class template sub_­match
  template<class BidirectionalIterator>
    class sub_match;

  using csub_match  = sub_match<const char*>;
  using wcsub_match = sub_match<const wchar_t*>;
  using ssub_match  = sub_match<string::const_iterator>;
  using wssub_match = sub_match<wstring::const_iterator>;

  // [re.submatch.op], sub_­match non-member operators
  template<class BiIter>
    bool operator==(const sub_match<BiIter>& lhs, const sub_match<BiIter>& rhs);
  template<class BiIter>
    auto operator<=>(const sub_match<BiIter>& lhs, const sub_match<BiIter>& rhs);

  template<class BiIter, class ST, class SA>
    bool operator==(
      const sub_match<BiIter>& lhs,
      const basic_string<typename iterator_traits<BiIter>::value_type, ST, SA>& rhs);
  template<class BiIter, class ST, class SA>
    auto operator<=>(
      const sub_match<BiIter>& lhs,
      const basic_string<typename iterator_traits<BiIter>::value_type, ST, SA>& rhs);

  template<class BiIter>
    bool operator==(const sub_match<BiIter>& lhs,
                    const typename iterator_traits<BiIter>::value_type* rhs);
  template<class BiIter>
    auto operator<=>(const sub_match<BiIter>& lhs,
                     const typename iterator_traits<BiIter>::value_type* rhs);

  template<class BiIter>
    bool operator==(const sub_match<BiIter>& lhs,
                    const typename iterator_traits<BiIter>::value_type& rhs);
  template<class BiIter>
    auto operator<=>(const sub_match<BiIter>& lhs,
                     const typename iterator_traits<BiIter>::value_type& rhs);

  template<class charT, class ST, class BiIter>
    basic_ostream<charT, ST>&
      operator<<(basic_ostream<charT, ST>& os, const sub_match<BiIter>& m);

  // [re.results], class template match_­results
  template<class BidirectionalIterator,
           class Allocator = allocator<sub_match<BidirectionalIterator>>>
    class match_results;

  using cmatch  = match_results<const char*>;
  using wcmatch = match_results<const wchar_t*>;
  using smatch  = match_results<string::const_iterator>;
  using wsmatch = match_results<wstring::const_iterator>;

  // match_­results comparisons
  template<class BidirectionalIterator, class Allocator>
    bool operator==(const match_results<BidirectionalIterator, Allocator>& m1,
                    const match_results<BidirectionalIterator, Allocator>& m2);

  // [re.results.swap], match_­results swap
  template<class BidirectionalIterator, class Allocator>
    void swap(match_results<BidirectionalIterator, Allocator>& m1,
              match_results<BidirectionalIterator, Allocator>& m2);

  // [re.alg.match], function template regex_­match
  template<class BidirectionalIterator, class Allocator, class charT, class traits>
    bool regex_match(BidirectionalIterator first, BidirectionalIterator last,
                     match_results<BidirectionalIterator, Allocator>& m,
                     const basic_regex<charT, traits>& e,
                     regex_constants::match_flag_type flags = regex_constants::match_default);
  template<class BidirectionalIterator, class charT, class traits>
    bool regex_match(BidirectionalIterator first, BidirectionalIterator last,
                     const basic_regex<charT, traits>& e,
                     regex_constants::match_flag_type flags = regex_constants::match_default);
  template<class charT, class Allocator, class traits>
    bool regex_match(const charT* str, match_results<const charT*, Allocator>& m,
                     const basic_regex<charT, traits>& e,
                     regex_constants::match_flag_type flags = regex_constants::match_default);
  template<class ST, class SA, class Allocator, class charT, class traits>
    bool regex_match(const basic_string<charT, ST, SA>& s,
                     match_results<typename basic_string<charT, ST, SA>::const_iterator,
                                   Allocator>& m,
                     const basic_regex<charT, traits>& e,
                     regex_constants::match_flag_type flags = regex_constants::match_default);
  template<class ST, class SA, class Allocator, class charT, class traits>
    bool regex_match(const basic_string<charT, ST, SA>&&,
                     match_results<typename basic_string<charT, ST, SA>::const_iterator,
                                   Allocator>&,
                     const basic_regex<charT, traits>&,
                     regex_constants::match_flag_type = regex_constants::match_default) = delete;
  template<class charT, class traits>
    bool regex_match(const charT* str,
                     const basic_regex<charT, traits>& e,
                     regex_constants::match_flag_type flags = regex_constants::match_default);
  template<class ST, class SA, class charT, class traits>
    bool regex_match(const basic_string<charT, ST, SA>& s,
                     const basic_regex<charT, traits>& e,
                     regex_constants::match_flag_type flags = regex_constants::match_default);

  // [re.alg.search], function template regex_­search
  template<class BidirectionalIterator, class Allocator, class charT, class traits>
    bool regex_search(BidirectionalIterator first, BidirectionalIterator last,
                      match_results<BidirectionalIterator, Allocator>& m,
                      const basic_regex<charT, traits>& e,
                      regex_constants::match_flag_type flags = regex_constants::match_default);
  template<class BidirectionalIterator, class charT, class traits>
    bool regex_search(BidirectionalIterator first, BidirectionalIterator last,
                      const basic_regex<charT, traits>& e,
                      regex_constants::match_flag_type flags = regex_constants::match_default);
  template<class charT, class Allocator, class traits>
    bool regex_search(const charT* str,
                      match_results<const charT*, Allocator>& m,
                      const basic_regex<charT, traits>& e,
                      regex_constants::match_flag_type flags = regex_constants::match_default);
  template<class charT, class traits>
    bool regex_search(const charT* str,
                      const basic_regex<charT, traits>& e,
                      regex_constants::match_flag_type flags = regex_constants::match_default);
  template<class ST, class SA, class charT, class traits>
    bool regex_search(const basic_string<charT, ST, SA>& s,
                      const basic_regex<charT, traits>& e,
                      regex_constants::match_flag_type flags = regex_constants::match_default);
  template<class ST, class SA, class Allocator, class charT, class traits>
    bool regex_search(const basic_string<charT, ST, SA>& s,
                      match_results<typename basic_string<charT, ST, SA>::const_iterator,
                                    Allocator>& m,
                      const basic_regex<charT, traits>& e,
                      regex_constants::match_flag_type flags = regex_constants::match_default);
  template<class ST, class SA, class Allocator, class charT, class traits>
    bool regex_search(const basic_string<charT, ST, SA>&&,
                      match_results<typename basic_string<charT, ST, SA>::const_iterator,
                                    Allocator>&,
                      const basic_regex<charT, traits>&,
                      regex_constants::match_flag_type
                        = regex_constants::match_default) = delete;

  // [re.alg.replace], function template regex_­replace
  template<class OutputIterator, class BidirectionalIterator,
            class traits, class charT, class ST, class SA>
    OutputIterator
      regex_replace(OutputIterator out,
                    BidirectionalIterator first, BidirectionalIterator last,
                    const basic_regex<charT, traits>& e,
                    const basic_string<charT, ST, SA>& fmt,
                    regex_constants::match_flag_type flags = regex_constants::match_default);
  template<class OutputIterator, class BidirectionalIterator, class traits, class charT>
    OutputIterator
      regex_replace(OutputIterator out,
                    BidirectionalIterator first, BidirectionalIterator last,
                    const basic_regex<charT, traits>& e,
                    const charT* fmt,
                    regex_constants::match_flag_type flags = regex_constants::match_default);
  template<class traits, class charT, class ST, class SA, class FST, class FSA>
    basic_string<charT, ST, SA>
      regex_replace(const basic_string<charT, ST, SA>& s,
                    const basic_regex<charT, traits>& e,
                    const basic_string<charT, FST, FSA>& fmt,
                    regex_constants::match_flag_type flags = regex_constants::match_default);
  template<class traits, class charT, class ST, class SA>
    basic_string<charT, ST, SA>
      regex_replace(const basic_string<charT, ST, SA>& s,
                    const basic_regex<charT, traits>& e,
                    const charT* fmt,
                    regex_constants::match_flag_type flags = regex_constants::match_default);
  template<class traits, class charT, class ST, class SA>
    basic_string<charT>
      regex_replace(const charT* s,
                    const basic_regex<charT, traits>& e,
                    const basic_string<charT, ST, SA>& fmt,
                    regex_constants::match_flag_type flags = regex_constants::match_default);
  template<class traits, class charT>
    basic_string<charT>
      regex_replace(const charT* s,
                    const basic_regex<charT, traits>& e,
                    const charT* fmt,
                    regex_constants::match_flag_type flags = regex_constants::match_default);

  // [re.regiter], class template regex_­iterator
  template<class BidirectionalIterator,
            class charT = typename iterator_traits<BidirectionalIterator>::value_type,
            class traits = regex_traits<charT>>
    class regex_iterator;

  using cregex_iterator  = regex_iterator<const char*>;
  using wcregex_iterator = regex_iterator<const wchar_t*>;
  using sregex_iterator  = regex_iterator<string::const_iterator>;
  using wsregex_iterator = regex_iterator<wstring::const_iterator>;

  // [re.tokiter], class template regex_­token_­iterator
  template<class BidirectionalIterator,
            class charT = typename iterator_traits<BidirectionalIterator>::value_type,
            class traits = regex_traits<charT>>
    class regex_token_iterator;

  using cregex_token_iterator  = regex_token_iterator<const char*>;
  using wcregex_token_iterator = regex_token_iterator<const wchar_t*>;
  using sregex_token_iterator  = regex_token_iterator<string::const_iterator>;
  using wsregex_token_iterator = regex_token_iterator<wstring::const_iterator>;

  namespace pmr {
    template<class BidirectionalIterator>
      using match_results =
        std::match_results<BidirectionalIterator,
                           polymorphic_allocator<sub_match<BidirectionalIterator>>>;

    using cmatch  = match_results<const char*>;
    using wcmatch = match_results<const wchar_t*>;
    using smatch  = match_results<string::const_iterator>;
    using wsmatch = match_results<wstring::const_iterator>;
  }
}

30.5 Namespace std​::​regex_­constants [re.const]

The namespace std​::​regex_­constants holds symbolic constants used by the regular expression library.
This namespace provides three types, syntax_­option_­type, match_­flag_­type, and error_­type, along with several constants of these types.

30.5.1 Bitmask type syntax_­option_­type [re.synopt]

namespace std::regex_constants {
  using syntax_option_type = T1;
  inline constexpr syntax_option_type icase = unspecified;
  inline constexpr syntax_option_type nosubs = unspecified;
  inline constexpr syntax_option_type optimize = unspecified;
  inline constexpr syntax_option_type collate = unspecified;
  inline constexpr syntax_option_type ECMAScript = unspecified;
  inline constexpr syntax_option_type basic = unspecified;
  inline constexpr syntax_option_type extended = unspecified;
  inline constexpr syntax_option_type awk = unspecified;
  inline constexpr syntax_option_type grep = unspecified;
  inline constexpr syntax_option_type egrep = unspecified;
  inline constexpr syntax_option_type multiline = unspecified;
}
The type syntax_­option_­type is an implementation-defined bitmask type ([bitmask.types]).
Setting its elements has the effects listed in Table 136.
A valid value of type syntax_­option_­type shall have at most one of the grammar elements ECMAScript, basic, extended, awk, grep, egrep, set.
If no grammar element is set, the default grammar is ECMAScript.
Table 136: syntax_­option_­type effects   [tab:re.synopt]
Element
Effect(s) if set
icase
Specifies that matching of regular expressions against a character container sequence shall be performed without regard to case.
nosubs
Specifies that no sub-expressions shall be considered to be marked, so that when a regular expression is matched against a character container sequence, no sub-expression matches shall be stored in the supplied match_­results object.
optimize
Specifies that the regular expression engine should pay more attention to the speed with which regular expressions are matched, and less to the speed with which regular expression objects are constructed.
Otherwise it has no detectable effect on the program output.
collate
Specifies that character ranges of the form "[a-b]" shall be locale sensitive.
ECMAScript
Specifies that the grammar recognized by the regular expression engine shall be that used by ECMAScript in ECMA-262, as modified in [re.grammar].

See also: ECMA-262 15.10
basic
Specifies that the grammar recognized by the regular expression engine shall be that used by basic regular expressions in POSIX.
See also: POSIX, Base Definitions and Headers, Section 9.3
extended
Specifies that the grammar recognized by the regular expression engine shall be that used by extended regular expressions in POSIX.
See also: POSIX, Base Definitions and Headers, Section 9.4
awk
Specifies that the grammar recognized by the regular expression engine shall be that used by the utility awk in POSIX.
grep
Specifies that the grammar recognized by the regular expression engine shall be that used by the utility grep in POSIX.
egrep
Specifies that the grammar recognized by the regular expression engine shall be that used by the utility grep when given the -E option in POSIX.
multiline
Specifies that ^ shall match the beginning of a line and $ shall match the end of a line, if the ECMAScript engine is selected.

30.5.2 Bitmask type match_­flag_­type [re.matchflag]

namespace std::regex_constants {
  using match_flag_type = T2;
  inline constexpr match_flag_type match_­default = {};
  inline constexpr match_flag_type match_­not_­bol = unspecified;
  inline constexpr match_flag_type match_­not_­eol = unspecified;
  inline constexpr match_flag_type match_­not_­bow = unspecified;
  inline constexpr match_flag_type match_­not_­eow = unspecified;
  inline constexpr match_flag_type match_­any = unspecified;
  inline constexpr match_flag_type match_­not_­null = unspecified;
  inline constexpr match_flag_type match_­continuous = unspecified;
  inline constexpr match_flag_type match_­prev_­avail = unspecified;
  inline constexpr match_flag_type format_­default = {};
  inline constexpr match_flag_type format_­sed = unspecified;
  inline constexpr match_flag_type format_­no_­copy = unspecified;
  inline constexpr match_flag_type format_­first_­only = unspecified;
}
The type match_­flag_­type is an implementation-defined bitmask type.
The constants of that type, except for match_­default and format_­default, are bitmask elements.
The match_­default and format_­default constants are empty bitmasks.
Matching a regular expression against a sequence of characters [first, last) proceeds according to the rules of the grammar specified for the regular expression object, modified according to the effects listed in Table 137 for any bitmask elements set.
Table 137: regex_­constants​::​match_­flag_­type effects when obtaining a match against a character container sequence [first, last).   [tab:re.matchflag]
Element
Effect(s) if set
match_­not_­bol
The first character in the sequence [first, last) shall be treated as though it is not at the beginning of a line, so the character ^ in the regular expression shall not match [first, first).
match_­not_­eol
The last character in the sequence [first, last) shall be treated as though it is not at the end of a line, so the character "$" in the regular expression shall not match [last, last).
match_­not_­bow
The expression "\\b" shall not match the sub-sequence [first, first).
match_­not_­eow
The expression "\\b" shall not match the sub-sequence [last, last).
match_­any
If more than one match is possible then any match is an acceptable result.
match_­not_­null
The expression shall not match an empty sequence.
match_­continuous
The expression shall only match a sub-sequence that begins at first.
match_­prev_­avail
--first is a valid iterator position.
When this flag is set the flags match_­not_­bol and match_­not_­bow shall be ignored by the regular expression algorithms and iterators.
format_­default
When a regular expression match is to be replaced by a new string, the new string shall be constructed using the rules used by the ECMAScript replace function in ECMA-262, part 15.5.4.11 String.prototype.replace.
In addition, during search and replace operations all non-overlapping occurrences of the regular expression shall be located and replaced, and sections of the input that did not match the expression shall be copied unchanged to the output string.
format_­sed
When a regular expression match is to be replaced by a new string, the new string shall be constructed using the rules used by the sed utility in POSIX.
format_­no_­copy
During a search and replace operation, sections of the character container sequence being searched that do not match the regular expression shall not be copied to the output string.
format_­first_­only
When specified during a search and replace operation, only the first occurrence of the regular expression shall be replaced.

30.5.3 Implementation-defined error_­type [re.err]

namespace std::regex_constants {
  using error_type = T3;
  inline constexpr error_type error_collate = unspecified;
  inline constexpr error_type error_ctype = unspecified;
  inline constexpr error_type error_escape = unspecified;
  inline constexpr error_type error_backref = unspecified;
  inline constexpr error_type error_brack = unspecified;
  inline constexpr error_type error_paren = unspecified;
  inline constexpr error_type error_brace = unspecified;
  inline constexpr error_type error_badbrace = unspecified;
  inline constexpr error_type error_range = unspecified;
  inline constexpr error_type error_space = unspecified;
  inline constexpr error_type error_badrepeat = unspecified;
  inline constexpr error_type error_complexity = unspecified;
  inline constexpr error_type error_stack = unspecified;
}
The type error_­type is an implementation-defined enumerated type.
Values of type error_­type represent the error conditions described in Table 138:
Table 138: error_­type values in the C locale   [tab:re.err]
Value
Error condition
error_­collate
The expression contained an invalid collating element name.
error_­ctype
The expression contained an invalid character class name.
error_­escape
The expression contained an invalid escaped character, or a trailing escape.
error_­backref
The expression contained an invalid back reference.
error_­brack
The expression contained mismatched [ and ].
error_­paren
The expression contained mismatched ( and ).
error_­brace
The expression contained mismatched { and }
error_­badbrace
The expression contained an invalid range in a {} expression.
error_­range
The expression contained an invalid character range, such as [b-a] in most encodings.
error_­space
There was insufficient memory to convert the expression into a finite state machine.
error_­badrepeat
One of *?+{ was not preceded by a valid regular expression.
error_­complexity
The complexity of an attempted match against a regular expression exceeded a pre-set level.
error_­stack
There was insufficient memory to determine whether the regular expression could match the specified character sequence.

30.6 Class regex_­error [re.badexp]

class regex_error : public runtime_error {
public:
  explicit regex_error(regex_constants::error_type ecode);
  regex_constants::error_type code() const;
};
The class regex_­error defines the type of objects thrown as exceptions to report errors from the regular expression library.
regex_error(regex_constants::error_type ecode);
Postconditions: ecode == code().
regex_constants::error_type code() const;
Returns: The error code that was passed to the constructor.

30.7 Class template regex_­traits [re.traits]

namespace std {
  template<class charT>
    struct regex_traits {
      using char_type       = charT;
      using string_type     = basic_string<char_type>;
      using locale_type     = locale;
      using char_class_type = bitmask_type;

      regex_traits();
      static size_t length(const char_type* p);
      charT translate(charT c) const;
      charT translate_nocase(charT c) const;
      template<class ForwardIterator>
        string_type transform(ForwardIterator first, ForwardIterator last) const;
      template<class ForwardIterator>
        string_type transform_primary(
          ForwardIterator first, ForwardIterator last) const;
      template<class ForwardIterator>
        string_type lookup_collatename(
          ForwardIterator first, ForwardIterator last) const;
      template<class ForwardIterator>
        char_class_type lookup_classname(
          ForwardIterator first, ForwardIterator last, bool icase = false) const;
      bool isctype(charT c, char_class_type f) const;
      int value(charT ch, int radix) const;
      locale_type imbue(locale_type l);
      locale_type getloc() const;
    };
}
The specializations regex_­traits<char> and regex_­traits<wchar_­t> meet the requirements for a regular expression traits class ([re.req]).
using char_class_type = bitmask_type;
The type char_­class_­type is used to represent a character classification and is capable of holding an implementation specific set returned by lookup_­classname.
static size_t length(const char_type* p);
Returns: char_­traits<charT>​::​length(p).
charT translate(charT c) const;
Returns: c.
charT translate_nocase(charT c) const;
Returns: use_­facet<ctype<charT>>(getloc()).tolower(c).
template<class ForwardIterator> string_type transform(ForwardIterator first, ForwardIterator last) const;
Effects: As if by:
string_type str(first, last);
return use_facet<collate<charT>>(
  getloc()).transform(str.data(), str.data() + str.length());
template<class ForwardIterator> string_type transform_primary(ForwardIterator first, ForwardIterator last) const;
Effects: If
typeid(use_facet<collate<charT>>) == typeid(collate_byname<charT>)
and the form of the sort key returned by collate_­byname<charT>​::​transform(first, last) is known and can be converted into a primary sort key then returns that key, otherwise returns an empty string.
template<class ForwardIterator> string_type lookup_collatename(ForwardIterator first, ForwardIterator last) const;
Returns: A sequence of one or more characters that represents the collating element consisting of the character sequence designated by the iterator range [first, last).
Returns an empty string if the character sequence is not a valid collating element.
template<class ForwardIterator> char_class_type lookup_classname( ForwardIterator first, ForwardIterator last, bool icase = false) const;
Returns: An unspecified value that represents the character classification named by the character sequence designated by the iterator range [first, last).
If the parameter icase is true then the returned mask identifies the character classification without regard to the case of the characters being matched, otherwise it does honor the case of the characters being matched.325
The value returned shall be independent of the case of the characters in the character sequence.
If the name is not recognized then returns char_­class_­type().
Remarks: For regex_­traits<char>, at least the narrow character names in Table 139 shall be recognized.
For regex_­traits<wchar_­t>, at least the wide character names in Table 139 shall be recognized.
bool isctype(charT c, char_class_type f) const;
Effects: Determines if the character c is a member of the character classification represented by f.
Returns: Given the following function declaration:
// for exposition only
template<class C>
  ctype_base::mask convert(typename regex_traits<C>::char_class_type f);
that returns a value in which each ctype_­base​::​mask value corresponding to a value in f named in Table 139 is set, then the result is determined as if by:
ctype_base::mask m = convert<charT>(f);
const ctype<charT>& ct = use_facet<ctype<charT>>(getloc());
if (ct.is(m, c)) {
  return true;
} else if (c == ct.widen('_')) {
  charT w[1] = { ct.widen('w') };
  char_class_type x = lookup_classname(w, w+1);
  return (f&x) == x;
} else {
  return false;
}
[Example
:
regex_traits<char> t;
string d("d");
string u("upper");
regex_traits<char>::char_class_type f;
f = t.lookup_classname(d.begin(), d.end());
f |= t.lookup_classname(u.begin(), u.end());
ctype_base::mask m = convert<char>(f);  // m == ctype_­base​::​digit|ctype_­base​::​upper
— end example
]
[Example
:
regex_traits<char> t;
string w("w");
regex_traits<char>::char_class_type f;
f = t.lookup_classname(w.begin(), w.end());
t.isctype('A', f);  // returns true
t.isctype('_', f);  // returns true
t.isctype(' ', f);  // returns false
— end example
]
int value(charT ch, int radix) const;
Preconditions: The value of radix is 8, 10, or 16.
Returns: The value represented by the digit ch in base radix if the character ch is a valid digit in base radix; otherwise returns -1.
locale_type imbue(locale_type loc);
Effects: Imbues this with a copy of the locale loc.
[Note
:
Calling imbue with a different locale than the one currently in use invalidates all cached data held by *this.
— end note
]
Returns: If no locale has been previously imbued then a copy of the global locale in effect at the time of construction of *this, otherwise a copy of the last argument passed to imbue.
Postconditions: getloc() == loc.
locale_type getloc() const;
Returns: If no locale has been imbued then a copy of the global locale in effect at the time of construction of *this, otherwise a copy of the last argument passed to imbue.
Table 139: Character class names and corresponding ctype masks   [tab:re.traits.classnames]
Narrow character name
Wide character name
Corresponding ctype_­base​::​mask value
"alnum"
L"alnum"
ctype_­base​::​alnum
"alpha"
L"alpha"
ctype_­base​::​alpha
"blank"
L"blank"
ctype_­base​::​blank
"cntrl"
L"cntrl"
ctype_­base​::​cntrl
"digit"
L"digit"
ctype_­base​::​digit
"d"
L"d"
ctype_­base​::​digit
"graph"
L"graph"
ctype_­base​::​graph
"lower"
L"lower"
ctype_­base​::​lower
"print"
L"print"
ctype_­base​::​print
"punct"
L"punct"
ctype_­base​::​punct
"space"
L"space"
ctype_­base​::​space
"s"
L"s"
ctype_­base​::​space
"upper"
L"upper"
ctype_­base​::​upper
"w"
L"w"
ctype_­base​::​alnum
"xdigit"
L"xdigit"
ctype_­base​::​xdigit
For example, if the parameter icase is true then [[:lower:]] is the same as [[:alpha:]].

30.8 Class template basic_­regex [re.regex]

For a char-like type charT, specializations of class template basic_­regex represent regular expressions constructed from character sequences of charT characters.
In the rest of [re.regex], charT denotes a given char-like type.
Storage for a regular expression is allocated and freed as necessary by the member functions of class basic_­regex.
Objects of type specialization of basic_­regex are responsible for converting the sequence of charT objects to an internal representation.
It is not specified what form this representation takes, nor how it is accessed by algorithms that operate on regular expressions.
[Note
:
Implementations will typically declare some function templates as friends of basic_­regex to achieve this.
— end note
]
The functions described in this Clause report errors by throwing exceptions of type regex_­error.
namespace std {
  template<class charT, class traits = regex_traits<charT>>
    class basic_regex {
    public:
      // types
      using value_type  =          charT;
      using traits_type =          traits;
      using string_type = typename traits::string_type;
      using flag_type   =          regex_constants::syntax_option_type;
      using locale_type = typename traits::locale_type;

      // [re.synopt], constants
      static constexpr flag_type icase = regex_constants::icase;
      static constexpr flag_type nosubs = regex_constants::nosubs;
      static constexpr flag_type optimize = regex_constants::optimize;
      static constexpr flag_type collate = regex_constants::collate;
      static constexpr flag_type ECMAScript = regex_constants::ECMAScript;
      static constexpr flag_type basic = regex_constants::basic;
      static constexpr flag_type extended = regex_constants::extended;
      static constexpr flag_type awk = regex_constants::awk;
      static constexpr flag_type grep = regex_constants::grep;
      static constexpr flag_type egrep = regex_constants::egrep;
      static constexpr flag_type multiline = regex_constants::multiline;

      // [re.regex.construct], construct/copy/destroy
      basic_regex();
      explicit basic_regex(const charT* p, flag_type f = regex_constants::ECMAScript);
      basic_regex(const charT* p, size_t len, flag_type f = regex_constants::ECMAScript);
      basic_regex(const basic_regex&);
      basic_regex(basic_regex&&) noexcept;
      template<class ST, class SA>
        explicit basic_regex(const basic_string<charT, ST, SA>& s,
                             flag_type f = regex_constants::ECMAScript);
      template<class ForwardIterator>
        basic_regex(ForwardIterator first, ForwardIterator last,
                    flag_type f = regex_constants::ECMAScript);
      basic_regex(initializer_list<charT> il, flag_type f = regex_constants::ECMAScript);

      ~basic_regex();

      // [re.regex.assign], assign
      basic_regex& operator=(const basic_regex& e);
      basic_regex& operator=(basic_regex&& e) noexcept;
      basic_regex& operator=(const charT* p);
      basic_regex& operator=(initializer_list<charT> il);
      template<class ST, class SA>
        basic_regex& operator=(const basic_string<charT, ST, SA>& s);

      basic_regex& assign(const basic_regex& e);
      basic_regex& assign(basic_regex&& e) noexcept;
      basic_regex& assign(const charT* p, flag_type f = regex_constants::ECMAScript);
      basic_regex& assign(const charT* p, size_t len, flag_type f = regex_constants::ECMAScript);
      template<class ST, class SA>
        basic_regex& assign(const basic_string<charT, ST, SA>& s,
                            flag_type f = regex_constants::ECMAScript);
      template<class InputIterator>
        basic_regex& assign(InputIterator first, InputIterator last,
                            flag_type f = regex_constants::ECMAScript);
      basic_regex& assign(initializer_list<charT>,
                          flag_type f = regex_constants::ECMAScript);

      // [re.regex.operations], const operations
      unsigned mark_count() const;
      flag_type flags() const;

      // [re.regex.locale], locale
      locale_type imbue(locale_type loc);
      locale_type getloc() const;

      // [re.regex.swap], swap
      void swap(basic_regex&);
    };

  template<class ForwardIterator>
    basic_regex(ForwardIterator, ForwardIterator,
                regex_constants::syntax_option_type = regex_constants::ECMAScript)
      -> basic_regex<typename iterator_traits<ForwardIterator>::value_type>;
}

30.8.1 Constructors [re.regex.construct]

basic_regex();
Postconditions: *this does not match any character sequence.
explicit basic_regex(const charT* p, flag_type f = regex_constants::ECMAScript);
Preconditions: [p, p + char_­traits<charT>​::​length(p)) is a valid range.
Effects: The object's internal finite state machine is constructed from the regular expression contained in the sequence of characters [p, p + char_­traits<charT>​::​​length(p)), and interpreted according to the flags f.
Postconditions: flags() returns f.
mark_­count() returns the number of marked sub-expressions within the expression.
Throws: regex_­error if [p, p + char_­traits<charT>​::​length(p)) is not a valid regular expression.
basic_regex(const charT* p, size_t len, flag_type f = regex_constants::ECMAScript);
Preconditions: [p, p + len) is a valid range.
Effects: The object's internal finite state machine is constructed from the regular expression contained in the sequence of characters [p, p + len), and interpreted according the flags specified in f.
Postconditions: flags() returns f.
mark_­count() returns the number of marked sub-expressions within the expression.
Throws: regex_­error if [p, p + len) is not a valid regular expression.
basic_regex(const basic_regex& e);
Postconditions: flags() and mark_­count() return e.flags() and e.mark_­count(), respectively.
basic_regex(basic_regex&& e) noexcept;
Postconditions: flags() and mark_­count() return the values that e.flags() and e.mark_­count(), respectively, had before construction.
template<class ST, class SA> explicit basic_regex(const basic_string<charT, ST, SA>& s, flag_type f = regex_constants::ECMAScript);
Effects: The object's internal finite state machine is constructed from the regular expression contained in the string s, and interpreted according to the flags specified in f.
Postconditions: flags() returns f.
mark_­count() returns the number of marked sub-expressions within the expression.
Throws: regex_­error if s is not a valid regular expression.
template<class ForwardIterator> basic_regex(ForwardIterator first, ForwardIterator last, flag_type f = regex_constants::ECMAScript);
Effects: The object's internal finite state machine is constructed from the regular expression contained in the sequence of characters [first, last), and interpreted according to the flags specified in f.
Postconditions: flags() returns f.
mark_­count() returns the number of marked sub-expressions within the expression.
Throws: regex_­error if the sequence [first, last) is not a valid regular expression.
basic_regex(initializer_list<charT> il, flag_type f = regex_constants::ECMAScript);
Effects: Same as basic_­regex(il.begin(), il.end(), f).

30.8.2 Assignment [re.regex.assign]

basic_regex& operator=(const basic_regex& e);
Postconditions: flags() and mark_­count() return e.flags() and e.mark_­count(), respectively.
basic_regex& operator=(basic_regex&& e) noexcept;
Postconditions: flags() and mark_­count() return the values that e.flags() and e.mark_­count(), respectively, had before assignment.
e is in a valid state with unspecified value.
basic_regex& operator=(const charT* p);
Effects: Equivalent to: return assign(p);
basic_regex& operator=(initializer_list<charT> il);
Effects: Equivalent to: return assign(il.begin(), il.end());
template<class ST, class SA> basic_regex& operator=(const basic_string<charT, ST, SA>& s);
Effects: Equivalent to: return assign(s);
basic_regex& assign(const basic_regex& e);
Effects: Equivalent to: return *this = e;
basic_regex& assign(basic_regex&& e) noexcept;
Effects: Equivalent to: return *this = std​::​move(e);
basic_regex& assign(const charT* p, flag_type f = regex_constants::ECMAScript);
Effects: Equivalent to: return assign(string_­type(p), f);
basic_regex& assign(const charT* p, size_t len, flag_type f = regex_constants::ECMAScript);
Effects: Equivalent to: return assign(string_­type(p, len), f);
template<class ST, class SA> basic_regex& assign(const basic_string<charT, ST, SA>& s, flag_type f = regex_constants::ECMAScript);
Returns: *this.
Effects: Assigns the regular expression contained in the string s, interpreted according the flags specified in f.
If an exception is thrown, *this is unchanged.
Postconditions: If no exception is thrown, flags() returns f and mark_­count() returns the number of marked sub-expressions within the expression.
Throws: regex_­error if s is not a valid regular expression.
template<class InputIterator> basic_regex& assign(InputIterator first, InputIterator last, flag_type f = regex_constants::ECMAScript);
Effects: Equivalent to: return assign(string_­type(first, last), f);
basic_regex& assign(initializer_list<charT> il, flag_type f = regex_constants::ECMAScript);
Effects: Equivalent to: return assign(il.begin(), il.end(), f);

30.8.3 Constant operations [re.regex.operations]

unsigned mark_count() const;
Effects: Returns the number of marked sub-expressions within the regular expression.
flag_type flags() const;
Effects: Returns a copy of the regular expression syntax flags that were passed to the object's constructor or to the last call to assign.

30.8.4 Locale [re.regex.locale]

locale_type imbue(locale_type loc);
Effects: Returns the result of traits_­inst.imbue(loc) where traits_­inst is a (default-initialized) instance of the template type argument traits stored within the object.
After a call to imbue the basic_­regex object does not match any character sequence.
locale_type getloc() const;
Effects: Returns the result of traits_­inst.getloc() where traits_­inst is a (default-initialized) instance of the template parameter traits stored within the object.

30.8.5 Swap [re.regex.swap]

void swap(basic_regex& e);
Effects: Swaps the contents of the two regular expressions.
Postconditions: *this contains the regular expression that was in e, e contains the regular expression that was in *this.
Complexity: Constant time.

30.8.6 Non-member functions [re.regex.nonmemb]

template<class charT, class traits> void swap(basic_regex<charT, traits>& lhs, basic_regex<charT, traits>& rhs);
Effects: Calls lhs.swap(rhs).

30.9 Class template sub_­match [re.submatch]

Class template sub_­match denotes the sequence of characters matched by a particular marked sub-expression.
namespace std {
  template<class BidirectionalIterator>
    class sub_match : public pair<BidirectionalIterator, BidirectionalIterator> {
    public:
      using value_type      =
              typename iterator_traits<BidirectionalIterator>::value_type;
      using difference_type =
              typename iterator_traits<BidirectionalIterator>::difference_type;
      using iterator        = BidirectionalIterator;
      using string_type     = basic_string<value_type>;

      bool matched;

      constexpr sub_match();

      difference_type length() const;
      operator string_type() const;
      string_type str() const;

      int compare(const sub_match& s) const;
      int compare(const string_type& s) const;
      int compare(const value_type* s) const;
    };
}

30.9.1 Members [re.submatch.members]

constexpr sub_match();
Effects: Value-initializes the pair base class subobject and the member matched.
difference_type length() const;
Returns: matched ? distance(first, second) : 0.
operator string_type() const;
Returns: matched ? string_­type(first, second) : string_­type().
string_type str() const;
Returns: matched ? string_­type(first, second) : string_­type().
int compare(const sub_match& s) const;
Returns: str().compare(s.str()).
int compare(const string_type& s) const;
Returns: str().compare(s).
int compare(const value_type* s) const;
Returns: str().compare(s).

30.9.2 Non-member operators [re.submatch.op]

Let SM-CAT(I) be
compare_three_way_result_t<basic_string<typename iterator_traits<I>::value_type>>
template<class BiIter> bool operator==(const sub_match<BiIter>& lhs, const sub_match<BiIter>& rhs);
Returns: lhs.compare(rhs) == 0.
template<class BiIter> auto operator<=>(const sub_match<BiIter>& lhs, const sub_match<BiIter>& rhs);
Returns: static_­cast<SM-CAT(BiIter)>(lhs.compare(rhs) <=> 0).
template<class BiIter, class ST, class SA> bool operator==( const sub_match<BiIter>& lhs, const basic_string<typename iterator_traits<BiIter>::value_type, ST, SA>& rhs);
Returns:
lhs.compare(typename sub_match<BiIter>::string_type(rhs.data(), rhs.size())) == 0
template<class BiIter, class ST, class SA> auto operator<=>( const sub_match<BiIter>& lhs, const basic_string<typename iterator_traits<BiIter>::value_type, ST, SA>& rhs);
Returns:
static_cast<SM-CAT(BiIter)>(lhs.compare(
    typename sub_match<BiIter>::string_type(rhs.data(), rhs.size()))
      <=> 0
    )
template<class BiIter> bool operator==(const sub_match<BiIter>& lhs, const typename iterator_traits<BiIter>::value_type* rhs);
Returns: lhs.compare(rhs) == 0.
template<class BiIter> auto operator<=>(const sub_match<BiIter>& lhs, const typename iterator_traits<BiIter>::value_type* rhs);
Returns: static_­cast<SM-CAT(BiIter)>(lhs.compare(rhs) <=> 0).
template<class BiIter> bool operator==(const sub_match<BiIter>& lhs, const typename iterator_traits<BiIter>::value_type& rhs);
Returns: lhs.compare(typename sub_­match<BiIter>​::​string_­type(1, rhs)) == 0.
template<class BiIter> auto operator<=>(const sub_match<BiIter>& lhs, const typename iterator_traits<BiIter>::value_type& rhs);
Returns:
static_cast<SM-CAT(BiIter)>(lhs.compare(
    typename sub_match<BiIter>::string_type(1, rhs))
      <=> 0
    )
template<class charT, class ST, class BiIter> basic_ostream<charT, ST>& operator<<(basic_ostream<charT, ST>& os, const sub_match<BiIter>& m);
Returns: os << m.str().

30.10 Class template match_­results [re.results]

Class template match_­results denotes a collection of character sequences representing the result of a regular expression match.
Storage for the collection is allocated and freed as necessary by the member functions of class template match_­results.
The class template match_­results meets the requirements of an allocator-aware container and of a sequence container ([container.requirements.general], [sequence.reqmts]) except that only copy assignment, move assignment, and operations defined for const-qualified sequence containers are supported and that the semantics of comparison functions are different from those required for a container.
A default-constructed match_­results object has no fully established result state.
A match result is ready when, as a consequence of a completed regular expression match modifying such an object, its result state becomes fully established.
The effects of calling most member functions from a match_­results object that is not ready are undefined.
The sub_­match object stored at index 0 represents sub-expression 0, i.e., the whole match.
In this case the sub_­match member matched is always true.
The sub_­match object stored at index n denotes what matched the marked sub-expression n within the matched expression.
If the sub-expression n participated in a regular expression match then the sub_­match member matched evaluates to true, and members first and second denote the range of characters [first, second) which formed that match.
Otherwise matched is false, and members first and second point to the end of the sequence that was searched.
[Note
:
The sub_­match objects representing different sub-expressions that did not participate in a regular expression match need not be distinct.
— end note
]
namespace std {
  template<class BidirectionalIterator,
           class Allocator = allocator<sub_match<BidirectionalIterator>>>
    class match_results {
    public:
      using value_type      = sub_match<BidirectionalIterator>;
      using const_reference = const value_type&;
      using reference       = value_type&;
      using const_iterator  = implementation-defined;
      using iterator        = const_iterator;
      using difference_type =
              typename iterator_traits<BidirectionalIterator>::difference_type;
      using size_type       = typename allocator_traits<Allocator>::size_type;
      using allocator_type  = Allocator;
      using char_type       =
              typename iterator_traits<BidirectionalIterator>::value_type;
      using string_type     = basic_string<char_type>;

      // [re.results.const], construct/copy/destroy
      match_results() : match_results(Allocator()) {}
      explicit match_results(const Allocator&);
      match_results(const match_results& m);
      match_results(match_results&& m) noexcept;
      match_results& operator=(const match_results& m);
      match_results& operator=(match_results&& m);
      ~match_results();

      // [re.results.state], state
      bool ready() const;

      // [re.results.size], size
      size_type size() const;
      size_type max_size() const;
      [[nodiscard]] bool empty() const;

      // [re.results.acc], element access
      difference_type length(size_type sub = 0) const;
      difference_type position(size_type sub = 0) const;
      string_type str(size_type sub = 0) const;
      const_reference operator[](size_type n) const;

      const_reference prefix() const;
      const_reference suffix() const;
      const_iterator begin() const;
      const_iterator end() const;
      const_iterator cbegin() const;
      const_iterator cend() const;

      // [re.results.form], format
      template<class OutputIter>
        OutputIter
          format(OutputIter out,
                 const char_type* fmt_first, const char_type* fmt_last,
                 regex_constants::match_flag_type flags = regex_constants::format_default) const;
      template<class OutputIter, class ST, class SA>
        OutputIter
          format(OutputIter out,
                 const basic_string<char_type, ST, SA>& fmt,
                 regex_constants::match_flag_type flags = regex_constants::format_default) const;
      template<class ST, class SA>
        basic_string<char_type, ST, SA>
          format(const basic_string<char_type, ST, SA>& fmt,
                 regex_constants::match_flag_type flags = regex_constants::format_default) const;
      string_type
        format(const char_type* fmt,
               regex_constants::match_flag_type flags = regex_constants::format_default) const;

      // [re.results.all], allocator
      allocator_type get_allocator() const;

      // [re.results.swap], swap
      void swap(match_results& that);
    };
}

30.10.1 Constructors [re.results.const]

explicit match_results(const Allocator& a);
Postconditions: ready() returns false.
size() returns 0.
match_results(match_results&& m) noexcept;
Effects: The stored Allocator value is move constructed from m.get_­allocator().
Postconditions: As specified in Table 140.
match_results& operator=(const match_results& m);
Postconditions: As specified in Table 140.
match_results& operator=(match_results&& m);
Postconditions: As specified in Table 140.
Table 140: match_­results assignment operator effects   [tab:re.results.const]
Element
Value
ready()
m.ready()
size()
m.size()
str(n)
m.str(n) for all integers n < m.size()
prefix()
m.prefix()
suffix()
m.suffix()
(*this)[n]
m[n] for all integers n < m.size()
length(n)
m.length(n) for all integers n < m.size()
position(n)
m.position(n) for all integers n < m.size()

30.10.2 State [re.results.state]

bool ready() const;
Returns: true if *this has a fully established result state, otherwise false.

30.10.3 Size [re.results.size]

size_type size() const;
Returns: One plus the number of marked sub-expressions in the regular expression that was matched if *this represents the result of a successful match.
Otherwise returns 0.
[Note
:
The state of a match_­results object can be modified only by passing that object to regex_­match or regex_­search.
Subclauses [re.alg.match] and [re.alg.search] specify the effects of those algorithms on their match_­results arguments.
— end note
]
size_type max_size() const;
Returns: The maximum number of sub_­match elements that can be stored in *this.
[[nodiscard]] bool empty() const;
Returns: size() == 0.

30.10.4 Element access [re.results.acc]

difference_type length(size_type sub = 0) const;
Preconditions: ready() == true.
Returns: (*this)[sub].length().
difference_type position(size_type sub = 0) const;
Preconditions: ready() == true.
Returns: The distance from the start of the target sequence to (*this)[sub].first.
string_type str(size_type sub = 0) const;
Preconditions: ready() == true.
Returns: string_­type((*this)[sub]).
const_reference operator[](size_type n) const;
Preconditions: ready() == true.
Returns: A reference to the sub_­match object representing the character sequence that matched marked sub-expression n.
If n == 0 then returns a reference to a sub_­match object representing the character sequence that matched the whole regular expression.
If n >= size() then returns a sub_­match object representing an unmatched sub-expression.
const_reference prefix() const;
Preconditions: ready() == true.
Returns: A reference to the sub_­match object representing the character sequence from the start of the string being matched/searched to the start of the match found.
const_reference suffix() const;
Preconditions: ready() == true.
Returns: A reference to the sub_­match object representing the character sequence from the end of the match found to the end of the string being matched/searched.
const_iterator begin() const; const_iterator cbegin() const;
Returns: A starting iterator that enumerates over all the sub-expressions stored in *this.
const_iterator end() const; const_iterator cend() const;
Returns: A terminating iterator that enumerates over all the sub-expressions stored in *this.

30.10.5 Formatting [re.results.form]

template<class OutputIter> OutputIter format( OutputIter out, const char_type* fmt_first, const char_type* fmt_last, regex_constants::match_flag_type flags = regex_constants::format_default) const;
Preconditions: ready() == true and OutputIter meets the requirements for a Cpp17OutputIterator ([output.iterators]).
Effects: Copies the character sequence [fmt_­first, fmt_­last) to OutputIter out.
Replaces each format specifier or escape sequence in the copied range with either the character(s) it represents or the sequence of characters within *this to which it refers.
The bitmasks specified in flags determine which format specifiers and escape sequences are recognized.
Returns: out.
template<class OutputIter, class ST, class SA> OutputIter format( OutputIter out, const basic_string<char_type, ST, SA>& fmt, regex_constants::match_flag_type flags = regex_constants::format_default) const;
Effects: Equivalent to:
return format(out, fmt.data(), fmt.data() + fmt.size(), flags);
template<class ST, class SA> basic_string<char_type, ST, SA> format( const basic_string<char_type, ST, SA>& fmt, regex_constants::match_flag_type flags = regex_constants::format_default) const;
Preconditions: ready() == true.
Effects: Constructs an empty string result of type basic_­string<char_­type, ST, SA> and calls:
format(back_inserter(result), fmt, flags);
Returns: result.
string_type format( const char_type* fmt, regex_constants::match_flag_type flags = regex_constants::format_default) const;
Preconditions: ready() == true.
Effects: Constructs an empty string result of type string_­type and calls:
format(back_inserter(result), fmt, fmt + char_traits<char_type>::length(fmt), flags);
Returns: result.

30.10.6 Allocator [re.results.all]

allocator_type get_allocator() const;
Returns: A copy of the Allocator that was passed to the object's constructor or, if that allocator has been replaced, a copy of the most recent replacement.

30.10.7 Swap [re.results.swap]

void swap(match_results& that);
Effects: Swaps the contents of the two sequences.
Postconditions: *this contains the sequence of matched sub-expressions that were in that, that contains the sequence of matched sub-expressions that were in *this.
Complexity: Constant time.
template<class BidirectionalIterator, class Allocator> void swap(match_results<BidirectionalIterator, Allocator>& m1, match_results<BidirectionalIterator, Allocator>& m2);
Effects: As if by m1.swap(m2).

30.10.8 Non-member functions [re.results.nonmember]

template<class BidirectionalIterator, class Allocator> bool operator==(const match_results<BidirectionalIterator, Allocator>& m1, const match_results<BidirectionalIterator, Allocator>& m2);
Returns: true if neither match result is ready, false if one match result is ready and the other is not.
If both match results are ready, returns true only if:
  • m1.empty() && m2.empty(), or
  • !m1.empty() && !m2.empty(), and the following conditions are satisfied:
    • m1.prefix() == m2.prefix(),
    • m1.size() == m2.size() && equal(m1.begin(), m1.end(), m2.begin()), and
    • m1.suffix() == m2.suffix().
[Note
:
The algorithm equal is defined in [algorithms].
— end note
]

30.11 Regular expression algorithms [re.alg]

30.11.1 Exceptions [re.except]

The algorithms described in subclause [re.alg] may throw an exception of type regex_­error.
If such an exception e is thrown, e.code() shall return either regex_­constants​::​error_­complexity or regex_­constants​::​error_­stack.

30.11.2 regex_­match [re.alg.match]

template<class BidirectionalIterator, class Allocator, class charT, class traits> bool regex_match(BidirectionalIterator first, BidirectionalIterator last, match_results<BidirectionalIterator, Allocator>& m, const basic_regex<charT, traits>& e, regex_constants::match_flag_type flags = regex_constants::match_default);
Preconditions: BidirectionalIterator meets the Cpp17BidirectionalIterator requirements ([bidirectional.iterators]).
Effects: Determines whether there is a match between the regular expression e, and all of the character sequence [first, last).
The parameter flags is used to control how the expression is matched against the character sequence.
When determining if there is a match, only potential matches that match the entire character sequence are considered.
Returns true if such a match exists, false otherwise.
[Example
:
std::regex re("Get|GetValue");
std::cmatch m;
regex_search("GetValue", m, re);        // returns true, and m[0] contains "Get"
regex_match ("GetValue", m, re);        // returns true, and m[0] contains "GetValue"
regex_search("GetValues", m, re);       // returns true, and m[0] contains "Get"
regex_match ("GetValues", m, re);       // returns false
— end example
]
Postconditions: m.ready() == true in all cases.
If the function returns false, then the effect on parameter m is unspecified except that m.size() returns 0 and m.empty() returns true.
Otherwise the effects on parameter m are given in Table 141.
Table 141: Effects of regex_­match algorithm   [tab:re.alg.match]
Element
Value
m.size()
1 + e.mark_­count()
m.empty()
false
m.prefix().first
first
m.prefix().second
first
m.prefix().matched
false
m.suffix().first
last
m.suffix().second
last
m.suffix().matched
false
m[0].first
first
m[0].second
last
m[0].matched
true
m[n].first
For all integers 0 < n < m.size(), the start of the sequence that matched sub-expression n.
Alternatively, if sub-expression n did not participate in the match, then last.
m[n].second
For all integers 0 < n < m.size(), the end of the sequence that matched sub-expression n.
Alternatively, if sub-expression n did not participate in the match, then last.
m[n].matched
For all integers 0 < n < m.size(), true if sub-expression n participated in the match, false otherwise.
template<class BidirectionalIterator, class charT, class traits> bool regex_match(BidirectionalIterator first, BidirectionalIterator last, const basic_regex<charT, traits>& e, regex_constants::match_flag_type flags = regex_constants::match_default);
Effects: Behaves “as if” by constructing an instance of match_­results<BidirectionalIterator> what, and then returning the result of regex_­match(first, last, what, e, flags).
template<class charT, class Allocator, class traits> bool regex_match(const charT* str, match_results<const charT*, Allocator>& m, const basic_regex<charT, traits>& e, regex_constants::match_flag_type flags = regex_constants::match_default);
Returns: regex_­match(str, str + char_­traits<charT>​::​length(str), m, e, flags).
template<class ST, class SA, class Allocator, class charT, class traits> bool regex_match(const basic_string<charT, ST, SA>& s, match_results<typename basic_string<charT, ST, SA>::const_iterator, Allocator>& m, const basic_regex<charT, traits>& e, regex_constants::match_flag_type flags = regex_constants::match_default);
Returns: regex_­match(s.begin(), s.end(), m, e, flags).
template<class charT, class traits> bool regex_match(const charT* str, const basic_regex<charT, traits>& e, regex_constants::match_flag_type flags = regex_constants::match_default);
Returns: regex_­match(str, str + char_­traits<charT>​::​length(str), e, flags)
template<class ST, class SA, class charT, class traits> bool regex_match(const basic_string<charT, ST, SA>& s, const basic_regex<charT, traits>& e, regex_constants::match_flag_type flags = regex_constants::match_default);
Returns: regex_­match(s.begin(), s.end(), e, flags).

30.11.3 regex_­search [re.alg.search]

template<class BidirectionalIterator, class Allocator, class charT, class traits> bool regex_search(BidirectionalIterator first, BidirectionalIterator last, match_results<BidirectionalIterator, Allocator>& m, const basic_regex<charT, traits>& e, regex_constants::match_flag_type flags = regex_constants::match_default);
Preconditions: BidirectionalIterator meets the Cpp17BidirectionalIterator requirements ([bidirectional.iterators]).
Effects: Determines whether there is some sub-sequence within [first, last) that matches the regular expression e.
The parameter flags is used to control how the expression is matched against the character sequence.
Returns true if such a sequence exists, false otherwise.
Postconditions: m.ready() == true in all cases.
If the function returns false, then the effect on parameter m is unspecified except that m.size() returns 0 and m.empty() returns true.
Otherwise the effects on parameter m are given in Table 142.
Table 142: Effects of regex_­search algorithm   [tab:re.alg.search]
Element
Value
m.size()
1 + e.mark_­count()
m.empty()
false
m.prefix().first
first
m.prefix().second
m[0].first
m.prefix().matched
m.prefix().first != m.prefix().second
m.suffix().first
m[0].second
m.suffix().second
last
m.suffix().matched
m.suffix().first != m.suffix().second
m[0].first
The start of the sequence of characters that matched the regular expression
m[0].second
The end of the sequence of characters that matched the regular expression
m[0].matched
true
m[n].first
For all integers 0 < n < m.size(), the start of the sequence that matched sub-expression n.
Alternatively, if sub-expression n did not participate in the match, then last.
m[n].second
For all integers 0 < n < m.size(), the end of the sequence that matched sub-expression n.
Alternatively, if sub-expression n did not participate in the match, then last .
m[n].matched
For all integers 0 < n < m.size(), true if sub-expression n participated in the match, false otherwise.
template<class charT, class Allocator, class traits> bool regex_search(const charT* str, match_results<const charT*, Allocator>& m, const basic_regex<charT, traits>& e, regex_constants::match_flag_type flags = regex_constants::match_default);
Returns: regex_­search(str, str + char_­traits<charT>​::​length(str), m, e, flags).
template<class ST, class SA, class Allocator, class charT, class traits> bool regex_search(const basic_string<charT, ST, SA>& s, match_results<typename basic_string<charT, ST, SA>::const_iterator, Allocator>& m, const basic_regex<charT, traits>& e, regex_constants::match_flag_type flags = regex_constants::match_default);
Returns: regex_­search(s.begin(), s.end(), m, e, flags).
template<class BidirectionalIterator, class charT, class traits> bool regex_search(BidirectionalIterator first, BidirectionalIterator last, const basic_regex<charT, traits>& e, regex_constants::match_flag_type flags = regex_constants::match_default);
Effects: Behaves “as if” by constructing an object what of type match_­results<BidirectionalIterator> and returning regex_­search(first, last, what, e, flags).
template<class charT, class traits> bool regex_search(const charT* str, const basic_regex<charT, traits>& e, regex_constants::match_flag_type flags = regex_constants::match_default);
Returns: regex_­search(str, str + char_­traits<charT>​::​length(str), e, flags).
template<class ST, class SA, class charT, class traits> bool regex_search(const basic_string<charT, ST, SA>& s, const basic_regex<charT, traits>& e, regex_constants::match_flag_type flags = regex_constants::match_default);
Returns: regex_­search(s.begin(), s.end(), e, flags).

30.11.4 regex_­replace [re.alg.replace]

template<class OutputIterator, class BidirectionalIterator, class traits, class charT, class ST, class SA> OutputIterator regex_replace(OutputIterator out, BidirectionalIterator first, BidirectionalIterator last, const basic_regex<charT, traits>& e, const basic_string<charT, ST, SA>& fmt, regex_constants::match_flag_type flags = regex_constants::match_default); template<class OutputIterator, class BidirectionalIterator, class traits, class charT> OutputIterator regex_replace(OutputIterator out, BidirectionalIterator first, BidirectionalIterator last, const basic_regex<charT, traits>& e, const charT* fmt, regex_constants::match_flag_type flags = regex_constants::match_default);
Effects: Constructs a regex_­iterator object i as if by
regex_iterator<BidirectionalIterator, charT, traits> i(first, last, e, flags)
and uses i to enumerate through all of the matches m of type match_­results<BidirectionalIterator> that occur within the sequence [first, last).
If no such matches are found and !(flags & regex_­constants​::​format_­no_­copy), then calls
out = copy(first, last, out)
If any matches are found then, for each such match:
  • If !(flags & regex_­constants​::​format_­no_­copy), calls
    out = copy(m.prefix().first, m.prefix().second, out)
    
  • Then calls
    out = m.format(out, fmt, flags)
    
    for the first form of the function and
    out = m.format(out, fmt, fmt + char_traits<charT>::length(fmt), flags)
    
    for the second.
Finally, if such a match is found and !(flags & regex_­constants​::​format_­no_­copy), calls
out = copy(last_m.suffix().first, last_m.suffix().second, out)
where last_­m is a copy of the last match found.
If flags & regex_­constants​::​format_­first_­only is nonzero, then only the first match found is replaced.
Returns: out.
template<class traits, class charT, class ST, class SA, class FST, class FSA> basic_string<charT, ST, SA> regex_replace(const basic_string<charT, ST, SA>& s, const basic_regex<charT, traits>& e, const basic_string<charT, FST, FSA>& fmt, regex_constants::match_flag_type flags = regex_constants::match_default); template<class traits, class charT, class ST, class SA> basic_string<charT, ST, SA> regex_replace(const basic_string<charT, ST, SA>& s, const basic_regex<charT, traits>& e, const charT* fmt, regex_constants::match_flag_type flags = regex_constants::match_default);
Effects: Constructs an empty string result of type basic_­string<charT, ST, SA> and calls:
regex_replace(back_inserter(result), s.begin(), s.end(), e, fmt, flags);
Returns: result.
template<class traits, class charT, class ST, class SA> basic_string<charT> regex_replace(const charT* s, const basic_regex<charT, traits>& e, const basic_string<charT, ST, SA>& fmt, regex_constants::match_flag_type flags = regex_constants::match_default); template<class traits, class charT> basic_string<charT> regex_replace(const charT* s, const basic_regex<charT, traits>& e, const charT* fmt, regex_constants::match_flag_type flags = regex_constants::match_default);
Effects: Constructs an empty string result of type basic_­string<charT> and calls:
regex_replace(back_inserter(result), s, s + char_traits<charT>::length(s), e, fmt, flags);
Returns: result.

30.12 Regular expression iterators [re.iter]

30.12.1 Class template regex_­iterator [re.regiter]

The class template regex_­iterator is an iterator adaptor.
It represents a new view of an existing iterator sequence, by enumerating all the occurrences of a regular expression within that sequence.
A regex_­iterator uses regex_­search to find successive regular expression matches within the sequence from which it was constructed.
After the iterator is constructed, and every time operator++ is used, the iterator finds and stores a value of match_­results<BidirectionalIterator>.
If the end of the sequence is reached (regex_­search returns false), the iterator becomes equal to the end-of-sequence iterator value.
The default constructor constructs an end-of-sequence iterator object, which is the only legitimate iterator to be used for the end condition.
The result of operator* on an end-of-sequence iterator is not defined.
For any other iterator value a const match_­results<BidirectionalIterator>& is returned.
The result of operator-> on an end-of-sequence iterator is not defined.
For any other iterator value a const match_­results<BidirectionalIterator>* is returned.
It is impossible to store things into regex_­iterators.
Two end-of-sequence iterators are always equal.
An end-of-sequence iterator is not equal to a non-end-of-sequence iterator.
Two non-end-of-sequence iterators are equal when they are constructed from the same arguments.
namespace std {
  template<class BidirectionalIterator,
            class charT = typename iterator_traits<BidirectionalIterator>::value_type,
            class traits = regex_traits<charT>>
    class regex_iterator {
    public:
      using regex_type        = basic_regex<charT, traits>;
      using iterator_category = forward_iterator_tag;
      using value_type        = match_results<BidirectionalIterator>;
      using difference_type   = ptrdiff_t;
      using pointer           = const value_type*;
      using reference         = const value_type&;

      regex_iterator();
      regex_iterator(BidirectionalIterator a, BidirectionalIterator b,
                     const regex_type& re,
                     regex_constants::match_flag_type m = regex_constants::match_default);
      regex_iterator(BidirectionalIterator, BidirectionalIterator,
                     const regex_type&&,
                     regex_constants::match_flag_type = regex_constants::match_default) = delete;
      regex_iterator(const regex_iterator&);
      regex_iterator& operator=(const regex_iterator&);
      bool operator==(const regex_iterator&) const;
      const value_type& operator*() const;
      const value_type* operator->() const;
      regex_iterator& operator++();
      regex_iterator operator++(int);

    private:
      BidirectionalIterator                begin;               // exposition only
      BidirectionalIterator                end;                 // exposition only
      const regex_type*                    pregex;              // exposition only
      regex_constants::match_flag_type     flags;               // exposition only
      match_results<BidirectionalIterator> match;               // exposition only
    };
}
An object of type regex_­iterator that is not an end-of-sequence iterator holds a zero-length match if match[0].matched == true and match[0].first == match[0].second.
[Note
:
For example, this can occur when the part of the regular expression that matched consists only of an assertion (such as '^', '$', '\b', '\B').
— end note
]

30.12.1.1 Constructors [re.regiter.cnstr]

regex_iterator();
Effects: Constructs an end-of-sequence iterator.
regex_iterator(BidirectionalIterator a, BidirectionalIterator b, const regex_type& re, regex_constants::match_flag_type m = regex_constants::match_default);
Effects: Initializes begin and end to a and b, respectively, sets pregex to addressof(re), sets flags to m, then calls regex_­search(begin, end, match, *pregex, flags).
If this call returns false the constructor sets *this to the end-of-sequence iterator.

30.12.1.2 Comparisons [re.regiter.comp]

bool operator==(const regex_iterator& right) const;
Returns: true if *this and right are both end-of-sequence iterators or if the following conditions all hold:
  • begin == right.begin,
  • end == right.end,
  • pregex == right.pregex,
  • flags == right.flags, and
  • match[0] == right.match[0];
otherwise false.

30.12.1.3 Indirection [re.regiter.deref]

const value_type& operator*() const;
Returns: match.
const value_type* operator->() const;
Returns: addressof(match).

30.12.1.4 Increment [re.regiter.incr]

regex_iterator& operator++();
Effects: Constructs a local variable start of type BidirectionalIterator and initializes it with the value of match[0].second.
If the iterator holds a zero-length match and start == end the operator sets *this to the end-of-sequence iterator and returns *this.
Otherwise, if the iterator holds a zero-length match, the operator calls:
regex_search(start, end, match, *pregex,
             flags | regex_constants::match_not_null | regex_constants::match_continuous)
If the call returns true the operator returns *this.
Otherwise the operator increments start and continues as if the most recent match was not a zero-length match.
If the most recent match was not a zero-length match, the operator sets flags to flags | regex_­constants​::​match_­prev_­avail and calls regex_­search(start, end, match, *pregex, flags).
If the call returns false the iterator sets *this to the end-of-sequence iterator.
The iterator then returns *this.
In all cases in which the call to regex_­search returns true, match.prefix().first shall be equal to the previous value of match[0].second, and for each index i in the half-open range [0, match.size()) for which match[i].matched is true, match.position(i) shall return distance(begin, match[i].​first).
[Note
:
This means that match.position(i) gives the offset from the beginning of the target sequence, which is often not the same as the offset from the sequence passed in the call to regex_­search.
— end note
]
It is unspecified how the implementation makes these adjustments.
[Note
:
This means that a compiler may call an implementation-specific search function, in which case a program-defined specialization of regex_­search will not be called.
— end note
]
regex_iterator operator++(int);
Effects: As if by:
regex_iterator tmp = *this;
++(*this);
return tmp;

30.12.2 Class template regex_­token_­iterator [re.tokiter]

The class template regex_­token_­iterator is an iterator adaptor; that is to say it represents a new view of an existing iterator sequence, by enumerating all the occurrences of a regular expression within that sequence, and presenting one or more sub-expressions for each match found.
Each position enumerated by the iterator is a sub_­match class template instance that represents what matched a particular sub-expression within the regular expression.
When class regex_­token_­iterator is used to enumerate a single sub-expression with index -1 the iterator performs field splitting: that is to say it enumerates one sub-expression for each section of the character container sequence that does not match the regular expression specified.
After it is constructed, the iterator finds and stores a value regex_­iterator<BidirectionalIterator> position and sets the internal count N to zero.
It also maintains a sequence subs which contains a list of the sub-expressions which will be enumerated.
Every time operator++ is used the count N is incremented; if N exceeds or equals subs.size(), then the iterator increments member position and sets count N to zero.
If the end of sequence is reached (position is equal to the end of sequence iterator), the iterator becomes equal to the end-of-sequence iterator value, unless the sub-expression being enumerated has index -1, in which case the iterator enumerates one last sub-expression that contains all the characters from the end of the last regular expression match to the end of the input sequence being enumerated, provided that this would not be an empty sub-expression.
The default constructor constructs an end-of-sequence iterator object, which is the only legitimate iterator to be used for the end condition.
The result of operator* on an end-of-sequence iterator is not defined.
For any other iterator value a const sub_­match<BidirectionalIterator>& is returned.
The result of operator-> on an end-of-sequence iterator is not defined.
For any other iterator value a const sub_­match<BidirectionalIterator>* is returned.
It is impossible to store things into regex_­token_­iterators.
Two end-of-sequence iterators are always equal.
An end-of-sequence iterator is not equal to a non-end-of-sequence iterator.
Two non-end-of-sequence iterators are equal when they are constructed from the same arguments.
namespace std {
  template<class BidirectionalIterator,
            class charT = typename iterator_traits<BidirectionalIterator>::value_type,
            class traits = regex_traits<charT>>
    class regex_token_iterator {
    public:
      using regex_type        = basic_regex<charT, traits>;
      using iterator_category = forward_iterator_tag;
      using value_type        = sub_match<BidirectionalIterator>;
      using difference_type   = ptrdiff_t;
      using pointer           = const value_type*;
      using reference         = const value_type&;

      regex_token_iterator();
      regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,
                           const regex_type& re,
                           int submatch = 0,
                           regex_constants::match_flag_type m =
                             regex_constants::match_default);
      regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,
                           const regex_type& re,
                           const vector<int>& submatches,
                           regex_constants::match_flag_type m =
                             regex_constants::match_default);
      regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,
                           const regex_type& re,
                           initializer_list<int> submatches,
                           regex_constants::match_flag_type m =
                             regex_constants::match_default);
      template<size_t N>
        regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,
                             const regex_type& re,
                             const int (&submatches)[N],
                             regex_constants::match_flag_type m =
                               regex_constants::match_default);
      regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,
                           const regex_type&& re,
                           int submatch = 0,
                           regex_constants::match_flag_type m =
                             regex_constants::match_default) = delete;
      regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,
                           const regex_type&& re,
                           const vector<int>& submatches,
                           regex_constants::match_flag_type m =
                             regex_constants::match_default) = delete;
      regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,
                           const regex_type&& re,
                           initializer_list<int> submatches,
                           regex_constants::match_flag_type m =
                             regex_constants::match_default) = delete;
      template<size_t N>
      regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b,
                           const regex_type&& re,
                           const int (&submatches)[N],
                           regex_constants::match_flag_type m =
                             regex_constants::match_default) = delete;
      regex_token_iterator(const regex_token_iterator&);
      regex_token_iterator& operator=(const regex_token_iterator&);
      bool operator==(const regex_token_iterator&) const;
      const value_type& operator*() const;
      const value_type* operator->() const;
      regex_token_iterator& operator++();
      regex_token_iterator operator++(int);

    private:
      using position_iterator =
        regex_iterator<BidirectionalIterator, charT, traits>;   // exposition only
      position_iterator position;                               // exposition only
      const value_type* result;                                 // exposition only
      value_type suffix;                                        // exposition only
      size_t N;                                                 // exposition only
      vector<int> subs;                                         // exposition only
    };
}
A suffix iterator is a regex_­token_­iterator object that points to a final sequence of characters at the end of the target sequence.
In a suffix iterator the member result holds a pointer to the data member suffix, the value of the member suffix.match is true, suffix.first points to the beginning of the final sequence, and suffix.second points to the end of the final sequence.
[Note
:
For a suffix iterator, data member suffix.first is the same as the end of the last match found, and suffix​.second is the same as the end of the target sequence.
— end note
]
The current match is (*position).prefix() if subs[N] == -1, or (*position)[subs[N]] for any other value of subs[N].

30.12.2.1 Constructors [re.tokiter.cnstr]

regex_token_iterator();
Effects: Constructs the end-of-sequence iterator.
regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b, const regex_type& re, int submatch = 0, regex_constants::match_flag_type m = regex_constants::match_default); regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b, const regex_type& re, const vector<int>& submatches, regex_constants::match_flag_type m = regex_constants::match_default); regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b, const regex_type& re, initializer_list<int> submatches, regex_constants::match_flag_type m = regex_constants::match_default); template<size_t N> regex_token_iterator(BidirectionalIterator a, BidirectionalIterator b, const regex_type& re, const int (&submatches)[N], regex_constants::match_flag_type m = regex_constants::match_default);
Preconditions: Each of the initialization values of submatches is >= -1.
Effects: The first constructor initializes the member subs to hold the single value submatch.
The second, third, and fourth constructors initialize the member subs to hold a copy of the sequence of integer values pointed to by the iterator range [begin(submatches), end(submatches)).
Each constructor then sets N to 0, and position to position_­iterator(a, b, re, m).
If position is not an end-of-sequence iterator the constructor sets result to the address of the current match.
Otherwise if any of the values stored in subs is equal to -1 the constructor sets *this to a suffix iterator that points to the range [a, b), otherwise the constructor sets *this to an end-of-sequence iterator.

30.12.2.2 Comparisons [re.tokiter.comp]

bool operator==(const regex_token_iterator& right) const;
Returns: true if *this and right are both end-of-sequence iterators, or if *this and right are both suffix iterators and suffix == right.suffix; otherwise returns false if *this or right is an end-of-sequence iterator or a suffix iterator.
Otherwise returns true if position == right.position, N == right.N, and subs == right.subs.
Otherwise returns false.

30.12.2.3 Indirection [re.tokiter.deref]

const value_type& operator*() const;
Returns: *result.
const value_type* operator->() const;
Returns: result.

30.12.2.4 Increment [re.tokiter.incr]

regex_token_iterator& operator++();
Effects: Constructs a local variable prev of type position_­iterator, initialized with the value of position.
If *this is a suffix iterator, sets *this to an end-of-sequence iterator.
Otherwise, if N + 1 < subs.size(), increments N and sets result to the address of the current match.
Otherwise, sets N to 0 and increments position.
If position is not an end-of-sequence iterator the operator sets result to the address of the current match.
Otherwise, if any of the values stored in subs is equal to -1 and prev->suffix().length() is not 0 the operator sets *this to a suffix iterator that points to the range [prev->suffix().first, prev->suffix().second).
Otherwise, sets *this to an end-of-sequence iterator.
Returns: *this
regex_token_iterator& operator++(int);
Effects: Constructs a copy tmp of *this, then calls ++(*this).
Returns: tmp.

30.13 Modified ECMAScript regular expression grammar [re.grammar]

The regular expression grammar recognized by basic_­regex objects constructed with the ECMAScript flag is that specified by ECMA-262, except as specified below.
Objects of type specialization of basic_­regex store within themselves a default-constructed instance of their traits template parameter, henceforth referred to as traits_­inst.
This traits_­inst object is used to support localization of the regular expression; basic_­regex member functions shall not call any locale dependent C or C++ API, including the formatted string input functions.
Instead they shall call the appropriate traits member function to achieve the required effect.
The following productions within the ECMAScript grammar are modified as follows:
IdentityEscape:
SourceCharacter but not c
The following new productions are then added:
ClassNameCharacter:
SourceCharacter but not one of . or = or :
The productions ClassAtomExClass, ClassAtomCollatingElement and ClassAtomEquivalence provide functionality equivalent to that of the same features in regular expressions in POSIX.
The regular expression grammar may be modified by any regex_­constants​::​syntax_­option_­type flags specified when constructing an object of type specialization of basic_­regex according to the rules in Table 136.
A ClassName production, when used in ClassAtomExClass, is not valid if traits_­inst.lookup_­classname returns zero for that name.
The names recognized as valid ClassNames are determined by the type of the traits class, but at least the following names shall be recognized: alnum, alpha, blank, cntrl, digit, graph, lower, print, punct, space, upper, xdigit, d, s, w.
In addition the following expressions shall be equivalent:
\d and [[:digit:]]

\D and [^[:digit:]]

\s and [[:space:]]

\S and [^[:space:]]

\w and [_[:alnum:]]

\W and [^_[:alnum:]]
A ClassName production when used in a ClassAtomCollatingElement production is not valid if the value returned by traits_­inst.lookup_­collatename for that name is an empty string.
The results from multiple calls to traits_­inst.lookup_­classname can be bitwise OR'ed together and subsequently passed to traits_­inst.isctype.
A ClassName production when used in a ClassAtomEquivalence production is not valid if the value returned by traits_­inst.lookup_­collatename for that name is an empty string or if the value returned by traits_­inst​.transform_­primary for the result of the call to traits_­inst.lookup_­collatename is an empty string.
When the sequence of characters being transformed to a finite state machine contains an invalid class name the translator shall throw an exception object of type regex_­error.
If the CV of a UnicodeEscapeSequence is greater than the largest value that can be held in an object of type charT the translator shall throw an exception object of type regex_­error.
[Note
:
This means that values of the form "uxxxx" that do not fit in a character are invalid.
— end note
]
Where the regular expression grammar requires the conversion of a sequence of characters to an integral value, this is accomplished by calling traits_­inst.value.
The behavior of the internal finite state machine representation when used to match a sequence of characters is as described in ECMA-262.
The behavior is modified according to any match_­flag_­type flags ([re.matchflag]) specified when using the regular expression object in one of the regular expression algorithms ([re.alg]).
The behavior is also localized by interaction with the traits class template parameter as follows:
  • During matching of a regular expression finite state machine against a sequence of characters, two characters c and d are compared using the following rules:
    • if (flags() & regex_­constants​::​icase) the two characters are equal if traits_­inst.translate_­nocase(c) == traits_­inst.translate_­nocase(d);
    • otherwise, if flags() & regex_­constants​::​collate the two characters are equal if traits_­inst​.translate(c) == traits_­inst​.translate(d);
    • otherwise, the two characters are equal if c == d.
  • During matching of a regular expression finite state machine against a sequence of characters, comparison of a collating element range c1-c2 against a character c is conducted as follows: if flags() & regex_­constants​::​collate is false then the character c is matched if c1 <= c && c <= c2, otherwise c is matched in accordance with the following algorithm:
    string_type str1 = string_type(1,
      flags() & icase ?
        traits_inst.translate_nocase(c1) : traits_inst.translate(c1));
    string_type str2 = string_type(1,
      flags() & icase ?
        traits_inst.translate_nocase(c2) : traits_inst.translate(c2));
    string_type str = string_type(1,
      flags() & icase ?
        traits_inst.translate_nocase(c) : traits_inst.translate(c));
    return traits_inst.transform(str1.begin(), str1.end())
          <= traits_inst.transform(str.begin(), str.end())
      && traits_inst.transform(str.begin(), str.end())
          <= traits_inst.transform(str2.begin(), str2.end());
    
  • During matching of a regular expression finite state machine against a sequence of characters, testing whether a collating element is a member of a primary equivalence class is conducted by first converting the collating element and the equivalence class to sort keys using traits​::​transform_­primary, and then comparing the sort keys for equality.
  • During matching of a regular expression finite state machine against a sequence of characters, a character c is a member of a character class designated by an iterator range [first, last) if traits_­inst.isctype(c, traits_­inst.lookup_­classname(first, last, flags() & icase)) is true.
See also: ECMA-262 15.10