Subclause | Header | |
Requirements | ||
Stop tokens | <stop_token> | |
Threads | <thread> | |
Mutual exclusion | <mutex>, <shared_mutex> | |
Condition variables | <condition_variable> | |
Semaphores | <semaphore> | |
Coordination types | <latch> <barrier> | |
Futures | <future> |
m.lock()
m.unlock()
m.try_lock()
m.try_lock_for(rel_time)
m.try_lock_until(abs_time)
namespace std { // [stoptoken], class stop_token class stop_token; // [stopsource], class stop_source class stop_source; // no-shared-stop-state indicator struct nostopstate_t { explicit nostopstate_t() = default; }; inline constexpr nostopstate_t nostopstate{}; // [stopcallback], class stop_callback template<class Callback> class stop_callback; }
namespace std { class stop_token { public: // [stoptoken.cons], constructors, copy, and assignment stop_token() noexcept; stop_token(const stop_token&) noexcept; stop_token(stop_token&&) noexcept; stop_token& operator=(const stop_token&) noexcept; stop_token& operator=(stop_token&&) noexcept; ~stop_token(); void swap(stop_token&) noexcept; // [stoptoken.mem], stop handling [[nodiscard]] bool stop_requested() const noexcept; [[nodiscard]] bool stop_possible() const noexcept; [[nodiscard]] friend bool operator==(const stop_token& lhs, const stop_token& rhs) noexcept; friend void swap(stop_token& lhs, stop_token& rhs) noexcept; }; }
stop_token() noexcept;
stop_token(const stop_token& rhs) noexcept;
stop_token(stop_token&& rhs) noexcept;
~stop_token();
stop_token& operator=(const stop_token& rhs) noexcept;
stop_token& operator=(stop_token&& rhs) noexcept;
void swap(stop_token& rhs) noexcept;
[[nodiscard]] bool stop_requested() const noexcept;
[[nodiscard]] bool stop_possible() const noexcept;
[[nodiscard]] bool operator==(const stop_token& lhs, const stop_token& rhs) noexcept;
friend void swap(stop_token& x, stop_token& y) noexcept;
namespace std { // no-shared-stop-state indicator struct nostopstate_t { explicit nostopstate_t() = default; }; inline constexpr nostopstate_t nostopstate{}; class stop_source { public: // [stopsource.cons], constructors, copy, and assignment stop_source(); explicit stop_source(nostopstate_t) noexcept; stop_source(const stop_source&) noexcept; stop_source(stop_source&&) noexcept; stop_source& operator=(const stop_source&) noexcept; stop_source& operator=(stop_source&&) noexcept; ~stop_source(); void swap(stop_source&) noexcept; // [stopsource.mem], stop handling [[nodiscard]] stop_token get_token() const noexcept; [[nodiscard]] bool stop_possible() const noexcept; [[nodiscard]] bool stop_requested() const noexcept; bool request_stop() noexcept; [[nodiscard]] friend bool operator==(const stop_source& lhs, const stop_source& rhs) noexcept; friend void swap(stop_source& lhs, stop_source& rhs) noexcept; }; }
stop_source();
explicit stop_source(nostopstate_t) noexcept;
stop_source(const stop_source& rhs) noexcept;
stop_source(stop_source&& rhs) noexcept;
~stop_source();
stop_source& operator=(const stop_source& rhs) noexcept;
stop_source& operator=(stop_source&& rhs) noexcept;
void swap(stop_source& rhs) noexcept;
[[nodiscard]] stop_token get_token() const noexcept;
[[nodiscard]] bool stop_possible() const noexcept;
[[nodiscard]] bool stop_requested() const noexcept;
bool request_stop() noexcept;
[[nodiscard]] friend bool
operator==(const stop_source& lhs, const stop_source& rhs) noexcept;
friend void swap(stop_source& x, stop_source& y) noexcept;
namespace std { template<class Callback> class stop_callback { public: using callback_type = Callback; // [stopcallback.cons], constructors and destructor template<class C> explicit stop_callback(const stop_token& st, C&& cb) noexcept(is_nothrow_constructible_v<Callback, C>); template<class C> explicit stop_callback(stop_token&& st, C&& cb) noexcept(is_nothrow_constructible_v<Callback, C>); ~stop_callback(); stop_callback(const stop_callback&) = delete; stop_callback(stop_callback&&) = delete; stop_callback& operator=(const stop_callback&) = delete; stop_callback& operator=(stop_callback&&) = delete; private: Callback callback; // exposition only }; template<class Callback> stop_callback(stop_token, Callback) -> stop_callback<Callback>; }
template<class C>
explicit stop_callback(const stop_token& st, C&& cb)
noexcept(is_nothrow_constructible_v<Callback, C>);
template<class C>
explicit stop_callback(stop_token&& st, C&& cb)
noexcept(is_nothrow_constructible_v<Callback, C>);
~stop_callback();
#include <compare> // see [compare.syn] namespace std { class thread; void swap(thread& x, thread& y) noexcept; // [thread.jthread.class] class jthread class jthread; namespace this_thread { thread::id get_id() noexcept; void yield() noexcept; template<class Clock, class Duration> void sleep_until(const chrono::time_point<Clock, Duration>& abs_time); template<class Rep, class Period> void sleep_for(const chrono::duration<Rep, Period>& rel_time); } }
namespace std { class thread { public: // types class id; using native_handle_type = implementation-defined; // see [thread.req.native] // construct/copy/destroy thread() noexcept; template<class F, class... Args> explicit thread(F&& f, Args&&... args); ~thread(); thread(const thread&) = delete; thread(thread&&) noexcept; thread& operator=(const thread&) = delete; thread& operator=(thread&&) noexcept; // members void swap(thread&) noexcept; bool joinable() const noexcept; void join(); void detach(); id get_id() const noexcept; native_handle_type native_handle(); // see [thread.req.native] // static members static unsigned int hardware_concurrency() noexcept; }; }
namespace std { class thread::id { public: id() noexcept; }; bool operator==(thread::id x, thread::id y) noexcept; strong_ordering operator<=>(thread::id x, thread::id y) noexcept; template<class charT, class traits> basic_ostream<charT, traits>& operator<<(basic_ostream<charT, traits>& out, thread::id id); // hash support template<class T> struct hash; template<> struct hash<thread::id>; }
id() noexcept;
bool operator==(thread::id x, thread::id y) noexcept;
strong_ordering operator<=>(thread::id x, thread::id y) noexcept;
template<class charT, class traits>
basic_ostream<charT, traits>&
operator<< (basic_ostream<charT, traits>& out, thread::id id);
template<> struct hash<thread::id>;
thread() noexcept;
template<class F, class... Args> explicit thread(F&& f, Args&&... args);
invoke(decay-copy(std::forward<F>(f)), decay-copy(std::forward<Args>(args))...)with the calls to decay-copy being evaluated in the constructing thread.
thread(thread&& x) noexcept;
~thread();
void swap(thread& x) noexcept;
bool joinable() const noexcept;
void join();
void detach();
id get_id() const noexcept;
namespace std { class jthread { public: // types using id = thread::id; using native_handle_type = thread::native_handle_type; // [thread.jthread.cons], constructors, move, and assignment jthread() noexcept; template<class F, class... Args> explicit jthread(F&& f, Args&&... args); ~jthread(); jthread(const jthread&) = delete; jthread(jthread&&) noexcept; jthread& operator=(const jthread&) = delete; jthread& operator=(jthread&&) noexcept; // [thread.jthread.mem], members void swap(jthread&) noexcept; [[nodiscard]] bool joinable() const noexcept; void join(); void detach(); [[nodiscard]] id get_id() const noexcept; [[nodiscard]] native_handle_type native_handle(); // see [thread.req.native] // [thread.jthread.stop], stop token handling [[nodiscard]] stop_source get_stop_source() noexcept; [[nodiscard]] stop_token get_stop_token() const noexcept; bool request_stop() noexcept; // [thread.jthread.special], specialized algorithms friend void swap(jthread& lhs, jthread& rhs) noexcept; // [thread.jthread.static], static members [[nodiscard]] static unsigned int hardware_concurrency() noexcept; private: stop_source ssource; // exposition only }; }
jthread() noexcept;
template<class F, class... Args> explicit jthread(F&& f, Args&&... args);
invoke(decay-copy(std::forward<F>(f)), get_stop_token(), decay-copy(std::forward<Args>(args))...)if that expression is well-formed, otherwise
invoke(decay-copy(std::forward<F>(f)), decay-copy(std::forward<Args>(args))...)with the calls to decay-copy being evaluated in the constructing thread.
jthread(jthread&& x) noexcept;
~jthread();
jthread& operator=(jthread&& x) noexcept;
void swap(jthread& x) noexcept;
[[nodiscard]] bool joinable() const noexcept;
void join();
void detach();
id get_id() const noexcept;
[[nodiscard]] stop_source get_stop_source() noexcept;
[[nodiscard]] stop_token get_stop_token() const noexcept;
bool request_stop() noexcept;
friend void swap(jthread& x, jthread& y) noexcept;
namespace std::this_thread { thread::id get_id() noexcept; void yield() noexcept; template<class Clock, class Duration> void sleep_until(const chrono::time_point<Clock, Duration>& abs_time); template<class Rep, class Period> void sleep_for(const chrono::duration<Rep, Period>& rel_time); }
thread::id this_thread::get_id() noexcept;
void this_thread::yield() noexcept;
template<class Clock, class Duration>
void sleep_until(const chrono::time_point<Clock, Duration>& abs_time);
template<class Rep, class Period>
void sleep_for(const chrono::duration<Rep, Period>& rel_time);
namespace std { class mutex; class recursive_mutex; class timed_mutex; class recursive_timed_mutex; struct defer_lock_t { explicit defer_lock_t() = default; }; struct try_to_lock_t { explicit try_to_lock_t() = default; }; struct adopt_lock_t { explicit adopt_lock_t() = default; }; inline constexpr defer_lock_t defer_lock { }; inline constexpr try_to_lock_t try_to_lock { }; inline constexpr adopt_lock_t adopt_lock { }; template<class Mutex> class lock_guard; template<class... MutexTypes> class scoped_lock; template<class Mutex> class unique_lock; template<class Mutex> void swap(unique_lock<Mutex>& x, unique_lock<Mutex>& y) noexcept; template<class L1, class L2, class... L3> int try_lock(L1&, L2&, L3&...); template<class L1, class L2, class... L3> void lock(L1&, L2&, L3&...); struct once_flag; template<class Callable, class... Args> void call_once(once_flag& flag, Callable&& func, Args&&... args); }
namespace std { class mutex { public: constexpr mutex() noexcept; ~mutex(); mutex(const mutex&) = delete; mutex& operator=(const mutex&) = delete; void lock(); bool try_lock(); void unlock(); using native_handle_type = implementation-defined; // see [thread.req.native] native_handle_type native_handle(); // see [thread.req.native] }; }
namespace std { class recursive_mutex { public: recursive_mutex(); ~recursive_mutex(); recursive_mutex(const recursive_mutex&) = delete; recursive_mutex& operator=(const recursive_mutex&) = delete; void lock(); bool try_lock() noexcept; void unlock(); using native_handle_type = implementation-defined; // see [thread.req.native] native_handle_type native_handle(); // see [thread.req.native] }; }
namespace std { class timed_mutex { public: timed_mutex(); ~timed_mutex(); timed_mutex(const timed_mutex&) = delete; timed_mutex& operator=(const timed_mutex&) = delete; void lock(); // blocking bool try_lock(); template<class Rep, class Period> bool try_lock_for(const chrono::duration<Rep, Period>& rel_time); template<class Clock, class Duration> bool try_lock_until(const chrono::time_point<Clock, Duration>& abs_time); void unlock(); using native_handle_type = implementation-defined; // see [thread.req.native] native_handle_type native_handle(); // see [thread.req.native] }; }
namespace std { class recursive_timed_mutex { public: recursive_timed_mutex(); ~recursive_timed_mutex(); recursive_timed_mutex(const recursive_timed_mutex&) = delete; recursive_timed_mutex& operator=(const recursive_timed_mutex&) = delete; void lock(); // blocking bool try_lock() noexcept; template<class Rep, class Period> bool try_lock_for(const chrono::duration<Rep, Period>& rel_time); template<class Clock, class Duration> bool try_lock_until(const chrono::time_point<Clock, Duration>& abs_time); void unlock(); using native_handle_type = implementation-defined; // see [thread.req.native] native_handle_type native_handle(); // see [thread.req.native] }; }
namespace std { struct defer_lock_t { }; // do not acquire ownership of the mutex struct try_to_lock_t { }; // try to acquire ownership of the mutex // without blocking struct adopt_lock_t { }; // assume the calling thread has already // obtained mutex ownership and manage it inline constexpr defer_lock_t defer_lock { }; inline constexpr try_to_lock_t try_to_lock { }; inline constexpr adopt_lock_t adopt_lock { }; }
namespace std { template<class Mutex> class lock_guard { public: using mutex_type = Mutex; explicit lock_guard(mutex_type& m); lock_guard(mutex_type& m, adopt_lock_t); ~lock_guard(); lock_guard(const lock_guard&) = delete; lock_guard& operator=(const lock_guard&) = delete; private: mutex_type& pm; // exposition only }; }
explicit lock_guard(mutex_type& m);
lock_guard(mutex_type& m, adopt_lock_t);
~lock_guard();
namespace std { template<class... MutexTypes> class scoped_lock { public: using mutex_type = Mutex; // If MutexTypes... consists of the single type Mutex explicit scoped_lock(MutexTypes&... m); explicit scoped_lock(adopt_lock_t, MutexTypes&... m); ~scoped_lock(); scoped_lock(const scoped_lock&) = delete; scoped_lock& operator=(const scoped_lock&) = delete; private: tuple<MutexTypes&...> pm; // exposition only }; }
explicit scoped_lock(MutexTypes&... m);
explicit scoped_lock(adopt_lock_t, MutexTypes&... m);
~scoped_lock();
namespace std { template<class Mutex> class unique_lock { public: using mutex_type = Mutex; // [thread.lock.unique.cons], construct/copy/destroy unique_lock() noexcept; explicit unique_lock(mutex_type& m); unique_lock(mutex_type& m, defer_lock_t) noexcept; unique_lock(mutex_type& m, try_to_lock_t); unique_lock(mutex_type& m, adopt_lock_t); template<class Clock, class Duration> unique_lock(mutex_type& m, const chrono::time_point<Clock, Duration>& abs_time); template<class Rep, class Period> unique_lock(mutex_type& m, const chrono::duration<Rep, Period>& rel_time); ~unique_lock(); unique_lock(const unique_lock&) = delete; unique_lock& operator=(const unique_lock&) = delete; unique_lock(unique_lock&& u) noexcept; unique_lock& operator=(unique_lock&& u); // [thread.lock.unique.locking], locking void lock(); bool try_lock(); template<class Rep, class Period> bool try_lock_for(const chrono::duration<Rep, Period>& rel_time); template<class Clock, class Duration> bool try_lock_until(const chrono::time_point<Clock, Duration>& abs_time); void unlock(); // [thread.lock.unique.mod], modifiers void swap(unique_lock& u) noexcept; mutex_type* release() noexcept; // [thread.lock.unique.obs], observers bool owns_lock() const noexcept; explicit operator bool () const noexcept; mutex_type* mutex() const noexcept; private: mutex_type* pm; // exposition only bool owns; // exposition only }; template<class Mutex> void swap(unique_lock<Mutex>& x, unique_lock<Mutex>& y) noexcept; }
unique_lock() noexcept;
explicit unique_lock(mutex_type& m);
unique_lock(mutex_type& m, defer_lock_t) noexcept;
unique_lock(mutex_type& m, try_to_lock_t);
unique_lock(mutex_type& m, adopt_lock_t);
template<class Clock, class Duration>
unique_lock(mutex_type& m, const chrono::time_point<Clock, Duration>& abs_time);
template<class Rep, class Period>
unique_lock(mutex_type& m, const chrono::duration<Rep, Period>& rel_time);
unique_lock(unique_lock&& u) noexcept;
unique_lock& operator=(unique_lock&& u);
~unique_lock();
void lock();
bool try_lock();
template<class Clock, class Duration>
bool try_lock_until(const chrono::time_point<Clock, Duration>& abs_time);
template<class Rep, class Period>
bool try_lock_for(const chrono::duration<Rep, Period>& rel_time);
void unlock();
void swap(unique_lock& u) noexcept;
mutex_type* release() noexcept;
template<class Mutex>
void swap(unique_lock<Mutex>& x, unique_lock<Mutex>& y) noexcept;
template<class L1, class L2, class... L3> int try_lock(L1&, L2&, L3&...);
template<class L1, class L2, class... L3> void lock(L1&, L2&, L3&...);
namespace std { struct once_flag { constexpr once_flag() noexcept; once_flag(const once_flag&) = delete; once_flag& operator=(const once_flag&) = delete; }; }
constexpr once_flag() noexcept;
template<class Callable, class... Args>
void call_once(once_flag& flag, Callable&& func, Args&&... args);
// global flag, regular function void init(); std::once_flag flag; void f() { std::call_once(flag, init); } // function static flag, function object struct initializer { void operator()(); }; void g() { static std::once_flag flag2; std::call_once(flag2, initializer()); } // object flag, member function class information { std::once_flag verified; void verifier(); public: void verify() { std::call_once(verified, &information::verifier, *this); } };— end example
namespace std { class condition_variable; class condition_variable_any; void notify_all_at_thread_exit(condition_variable& cond, unique_lock<mutex> lk); enum class cv_status { no_timeout, timeout }; }
void notify_all_at_thread_exit(condition_variable& cond, unique_lock<mutex> lk);
lk.unlock(); cond.notify_all();
namespace std { class condition_variable { public: condition_variable(); ~condition_variable(); condition_variable(const condition_variable&) = delete; condition_variable& operator=(const condition_variable&) = delete; void notify_one() noexcept; void notify_all() noexcept; void wait(unique_lock<mutex>& lock); template<class Predicate> void wait(unique_lock<mutex>& lock, Predicate pred); template<class Clock, class Duration> cv_status wait_until(unique_lock<mutex>& lock, const chrono::time_point<Clock, Duration>& abs_time); template<class Clock, class Duration, class Predicate> bool wait_until(unique_lock<mutex>& lock, const chrono::time_point<Clock, Duration>& abs_time, Predicate pred); template<class Rep, class Period> cv_status wait_for(unique_lock<mutex>& lock, const chrono::duration<Rep, Period>& rel_time); template<class Rep, class Period, class Predicate> bool wait_for(unique_lock<mutex>& lock, const chrono::duration<Rep, Period>& rel_time, Predicate pred); using native_handle_type = implementation-defined; // see [thread.req.native] native_handle_type native_handle(); // see [thread.req.native] }; }
condition_variable();
~condition_variable();
void notify_one() noexcept;
void notify_all() noexcept;
void wait(unique_lock<mutex>& lock);
template<class Predicate>
void wait(unique_lock<mutex>& lock, Predicate pred);
template<class Clock, class Duration>
cv_status wait_until(unique_lock<mutex>& lock,
const chrono::time_point<Clock, Duration>& abs_time);
template<class Rep, class Period>
cv_status wait_for(unique_lock<mutex>& lock,
const chrono::duration<Rep, Period>& rel_time);
template<class Clock, class Duration, class Predicate>
bool wait_until(unique_lock<mutex>& lock,
const chrono::time_point<Clock, Duration>& abs_time,
Predicate pred);
while (!pred()) if (wait_until(lock, abs_time) == cv_status::timeout) return pred(); return true;
template<class Rep, class Period, class Predicate>
bool wait_for(unique_lock<mutex>& lock,
const chrono::duration<Rep, Period>& rel_time,
Predicate pred);
return wait_until(lock, chrono::steady_clock::now() + rel_time, std::move(pred));
namespace std { class condition_variable_any { public: condition_variable_any(); ~condition_variable_any(); condition_variable_any(const condition_variable_any&) = delete; condition_variable_any& operator=(const condition_variable_any&) = delete; void notify_one() noexcept; void notify_all() noexcept; // [thread.condvarany.wait], noninterruptible waits template<class Lock> void wait(Lock& lock); template<class Lock, class Predicate> void wait(Lock& lock, Predicate pred); template<class Lock, class Clock, class Duration> cv_status wait_until(Lock& lock, const chrono::time_point<Clock, Duration>& abs_time); template<class Lock, class Clock, class Duration, class Predicate> bool wait_until(Lock& lock, const chrono::time_point<Clock, Duration>& abs_time, Predicate pred); template<class Lock, class Rep, class Period> cv_status wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time); template<class Lock, class Rep, class Period, class Predicate> bool wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time, Predicate pred); // [thread.condvarany.intwait], interruptible waits template<class Lock, class Predicate> bool wait(Lock& lock, stop_token stoken, Predicate pred); template<class Lock, class Clock, class Duration, class Predicate> bool wait_until(Lock& lock, stop_token stoken, const chrono::time_point<Clock, Duration>& abs_time, Predicate pred); template<class Lock, class Rep, class Period, class Predicate> bool wait_for(Lock& lock, stop_token stoken, const chrono::duration<Rep, Period>& rel_time, Predicate pred); }; }
condition_variable_any();
~condition_variable_any();
void notify_one() noexcept;
void notify_all() noexcept;
template<class Lock>
void wait(Lock& lock);
template<class Lock, class Predicate>
void wait(Lock& lock, Predicate pred);
template<class Lock, class Clock, class Duration>
cv_status wait_until(Lock& lock, const chrono::time_point<Clock, Duration>& abs_time);
template<class Lock, class Rep, class Period>
cv_status wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time);
template<class Lock, class Clock, class Duration, class Predicate>
bool wait_until(Lock& lock, const chrono::time_point<Clock, Duration>& abs_time, Predicate pred);
while (!pred()) if (wait_until(lock, abs_time) == cv_status::timeout) return pred(); return true;
template<class Lock, class Rep, class Period, class Predicate>
bool wait_for(Lock& lock, const chrono::duration<Rep, Period>& rel_time, Predicate pred);
template<class Lock, class Predicate>
bool wait(Lock& lock, stop_token stoken, Predicate pred);
while (!stoken.stop_requested()) { if (pred()) return true; wait(lock); } return pred();
template<class Lock, class Clock, class Duration, class Predicate>
bool wait_until(Lock& lock, stop_token stoken,
const chrono::time_point<Clock, Duration>& abs_time, Predicate pred);
while (!stoken.stop_requested()) { if (pred()) return true; if (cv.wait_until(lock, abs_time) == cv_status::timeout) return pred(); } return pred();
template<class Lock, class Rep, class Period, class Predicate>
bool wait_for(Lock& lock, stop_token stoken,
const chrono::duration<Rep, Period>& rel_time, Predicate pred);
namespace std { template<ptrdiff_t least_max_value = implementation-defined> class counting_semaphore; using binary_semaphore = counting_semaphore<1>; }
namespace std { template<ptrdiff_t least_max_value = implementation-defined> class counting_semaphore { public: static constexpr ptrdiff_t max() noexcept; constexpr explicit counting_semaphore(ptrdiff_t desired); ~counting_semaphore(); counting_semaphore(const counting_semaphore&) = delete; counting_semaphore& operator=(const counting_semaphore&) = delete; void release(ptrdiff_t update = 1); void acquire(); bool try_acquire() noexcept; template<class Rep, class Period> bool try_acquire_for(const chrono::duration<Rep, Period>& rel_time); template<class Clock, class Duration> bool try_acquire_until(const chrono::time_point<Clock, Duration>& abs_time); private: ptrdiff_t counter; // exposition only }; }
static constexpr ptrdiff_t max() noexcept;
constexpr explicit counting_semaphore(ptrdiff_t desired);
void release(ptrdiff_t update = 1);
bool try_acquire() noexcept;
void acquire();
template<class Rep, class Period>
bool try_acquire_for(const chrono::duration<Rep, Period>& rel_time);
template<class Clock, class Duration>
bool try_acquire_until(const chrono::time_point<Clock, Duration>& abs_time);
namespace std { class latch { public: static constexpr ptrdiff_t max() noexcept; constexpr explicit latch(ptrdiff_t expected); ~latch(); latch(const latch&) = delete; latch& operator=(const latch&) = delete; void count_down(ptrdiff_t update = 1); bool try_wait() const noexcept; void wait() const; void arrive_and_wait(ptrdiff_t update = 1); private: ptrdiff_t counter; // exposition only }; }
static constexpr ptrdiff_t max() noexcept;
constexpr explicit latch(ptrdiff_t expected);
void count_down(ptrdiff_t update = 1);
bool try_wait() const noexcept;
void wait() const;
void arrive_and_wait(ptrdiff_t update = 1);
namespace std { template<class CompletionFunction = see below> class barrier; }
namespace std { template<class CompletionFunction = see below> class barrier { public: using arrival_token = see below; static constexpr ptrdiff_t max() noexcept; constexpr explicit barrier(ptrdiff_t expected, CompletionFunction f = CompletionFunction()); ~barrier(); barrier(const barrier&) = delete; barrier& operator=(const barrier&) = delete; [[nodiscard]] arrival_token arrive(ptrdiff_t update = 1); void wait(arrival_token&& arrival) const; void arrive_and_wait(); void arrive_and_drop(); private: CompletionFunction completion; // exposition only }; }
static constexpr ptrdiff_t max() noexcept;
constexpr explicit barrier(ptrdiff_t expected,
CompletionFunction f = CompletionFunction());
[[nodiscard]] arrival_token arrive(ptrdiff_t update = 1);
void wait(arrival_token&& arrival) const;
void arrive_and_wait();
void arrive_and_drop();
namespace std { enum class future_errc { broken_promise = implementation-defined, future_already_retrieved = implementation-defined, promise_already_satisfied = implementation-defined, no_state = implementation-defined }; enum class launch : unspecified { async = unspecified, deferred = unspecified, implementation-defined }; enum class future_status { ready, timeout, deferred }; template<> struct is_error_code_enum<future_errc> : public true_type { }; error_code make_error_code(future_errc e) noexcept; error_condition make_error_condition(future_errc e) noexcept; const error_category& future_category() noexcept; class future_error; template<class R> class promise; template<class R> class promise<R&>; template<> class promise<void>; template<class R> void swap(promise<R>& x, promise<R>& y) noexcept; template<class R, class Alloc> struct uses_allocator<promise<R>, Alloc>; template<class R> class future; template<class R> class future<R&>; template<> class future<void>; template<class R> class shared_future; template<class R> class shared_future<R&>; template<> class shared_future<void>; template<class> class packaged_task; // not defined template<class R, class... ArgTypes> class packaged_task<R(ArgTypes...)>; template<class R, class... ArgTypes> void swap(packaged_task<R(ArgTypes...)>&, packaged_task<R(ArgTypes...)>&) noexcept; template<class F, class... Args> [[nodiscard]] future<invoke_result_t<decay_t<F>, decay_t<Args>...>> async(F&& f, Args&&... args); template<class F, class... Args> [[nodiscard]] future<invoke_result_t<decay_t<F>, decay_t<Args>...>> async(launch policy, F&& f, Args&&... args); }
const error_category& future_category() noexcept;
error_code make_error_code(future_errc e) noexcept;
error_condition make_error_condition(future_errc e) noexcept;
namespace std { class future_error : public logic_error { public: explicit future_error(future_errc e); const error_code& code() const noexcept; const char* what() const noexcept; private: error_code ec_; // exposition only }; }
explicit future_error(future_errc e);
const error_code& code() const noexcept;
const char* what() const noexcept;
namespace std { template<class R> class promise { public: promise(); template<class Allocator> promise(allocator_arg_t, const Allocator& a); promise(promise&& rhs) noexcept; promise(const promise&) = delete; ~promise(); // assignment promise& operator=(promise&& rhs) noexcept; promise& operator=(const promise&) = delete; void swap(promise& other) noexcept; // retrieving the result future<R> get_future(); // setting the result void set_value(see below); void set_exception(exception_ptr p); // setting the result with deferred notification void set_value_at_thread_exit(see below); void set_exception_at_thread_exit(exception_ptr p); }; template<class R> void swap(promise<R>& x, promise<R>& y) noexcept; template<class R, class Alloc> struct uses_allocator<promise<R>, Alloc>; }
template<class R, class Alloc>
struct uses_allocator<promise<R>, Alloc>
: true_type { };
promise();
template<class Allocator>
promise(allocator_arg_t, const Allocator& a);
promise(promise&& rhs) noexcept;
~promise();
promise& operator=(promise&& rhs) noexcept;
void swap(promise& other) noexcept;
future<R> get_future();
void promise::set_value(const R& r);
void promise::set_value(R&& r);
void promise<R&>::set_value(R& r);
void promise<void>::set_value();
void set_exception(exception_ptr p);
void promise::set_value_at_thread_exit(const R& r);
void promise::set_value_at_thread_exit(R&& r);
void promise<R&>::set_value_at_thread_exit(R& r);
void promise<void>::set_value_at_thread_exit();
void set_exception_at_thread_exit(exception_ptr p);
template<class R>
void swap(promise<R>& x, promise<R>& y) noexcept;
namespace std { template<class R> class future { public: future() noexcept; future(future&&) noexcept; future(const future&) = delete; ~future(); future& operator=(const future&) = delete; future& operator=(future&&) noexcept; shared_future<R> share() noexcept; // retrieving the value see below get(); // functions to check state bool valid() const noexcept; void wait() const; template<class Rep, class Period> future_status wait_for(const chrono::duration<Rep, Period>& rel_time) const; template<class Clock, class Duration> future_status wait_until(const chrono::time_point<Clock, Duration>& abs_time) const; }; }
future() noexcept;
future(future&& rhs) noexcept;
~future();
future& operator=(future&& rhs) noexcept;
shared_future<R> share() noexcept;
R future::get();
R& future<R&>::get();
void future<void>::get();
bool valid() const noexcept;
void wait() const;
template<class Rep, class Period>
future_status wait_for(const chrono::duration<Rep, Period>& rel_time) const;
template<class Clock, class Duration>
future_status wait_until(const chrono::time_point<Clock, Duration>& abs_time) const;
template<class F, class... Args>
[[nodiscard]] future<invoke_result_t<decay_t<F>, decay_t<Args>...>>
async(F&& f, Args&&... args);
template<class F, class... Args>
[[nodiscard]] future<invoke_result_t<decay_t<F>, decay_t<Args>...>>
async(launch policy, F&& f, Args&&... args);
int work1(int value); int work2(int value); int work(int value) { auto handle = std::async([=]{ return work2(value); }); int tmp = work1(value); return tmp + handle.get(); // #1 }— end example
namespace std { template<class> class packaged_task; // not defined template<class R, class... ArgTypes> class packaged_task<R(ArgTypes...)> { public: // construction and destruction packaged_task() noexcept; template<class F> explicit packaged_task(F&& f); ~packaged_task(); // no copy packaged_task(const packaged_task&) = delete; packaged_task& operator=(const packaged_task&) = delete; // move support packaged_task(packaged_task&& rhs) noexcept; packaged_task& operator=(packaged_task&& rhs) noexcept; void swap(packaged_task& other) noexcept; bool valid() const noexcept; // result retrieval future<R> get_future(); // execution void operator()(ArgTypes... ); void make_ready_at_thread_exit(ArgTypes...); void reset(); }; template<class R, class... ArgTypes> void swap(packaged_task<R(ArgTypes...)>& x, packaged_task<R(ArgTypes...)>& y) noexcept; }
packaged_task() noexcept;
template<class F>
packaged_task(F&& f);
packaged_task(packaged_task&& rhs) noexcept;
packaged_task& operator=(packaged_task&& rhs) noexcept;
~packaged_task();
void swap(packaged_task& other) noexcept;
bool valid() const noexcept;
future<R> get_future();
void operator()(ArgTypes... args);
void make_ready_at_thread_exit(ArgTypes... args);
void reset();