class X { static void f(); void f(); // error void f() const; // error void f() const volatile; // error void g(); void g() const; // OK: no static g void g() const volatile; // OK: no static g };— end example
class Y { void h() &; void h() const &; // OK void h() &&; // OK, all declarations have a ref-qualifier void i() &; void i() const; // error: prior declaration of i has a ref-qualifier };— end example
typedef int Int; void f(int i); void f(Int i); // OK: redeclaration of f(int) void f(int i) { /* ... */ } void f(Int i) { /* ... */ } // error: redefinition of f(int)— end example
enum E { a }; void f(int i) { /* ... */ } void f(E i) { /* ... */ }— end example
int f(char*); int f(char[]); // same as f(char*); int f(char[7]); // same as f(char*); int f(char[9]); // same as f(char*); int g(char(*)[10]); int g(char[5][10]); // same as g(char(*)[10]); int g(char[7][10]); // same as g(char(*)[10]); int g(char(*)[20]); // different from g(char(*)[10]);— end example
void h(int()); void h(int (*)()); // redeclaration of h(int()) void h(int x()) { } // definition of h(int()) void h(int (*x)()) { } // error: redefinition of h(int())— end example
typedef const int cInt; int f (int); int f (const int); // redeclaration of f(int) int f (int) { /* ... */ } // definition of f(int) int f (cInt) { /* ... */ } // error: redefinition of f(int)— end example
void f (int i, int j); void f (int i, int j = 99); // OK: redeclaration of f(int, int) void f (int i = 88, int j); // OK: redeclaration of f(int, int) void f (); // OK: overloaded declaration of f void prog () { f (1, 2); // OK: call f(int, int) f (1); // OK: call f(int, int) f (); // error: f(int, int) or f()? }— end example
template<int I> concept C = true; template<typename T> struct A { void f() requires C<42>; // #1 void f() requires true; // OK, different functions };— end example
void f(const char*); void g() { extern void f(int); f("asdf"); // error: f(int) hides f(const char*) // so there is no f(const char*) in this scope } void caller () { extern void callee(int, int); { extern void callee(int); // hides callee(int, int) callee(88, 99); // error: only callee(int) in scope } }— end example
class T { public: T(); }; class C : T { public: C(int); }; T a = 1; // error: no viable conversion (T(C(1)) not considered)— end example
struct A { A(); // #1 A(A &&); // #2 template<typename T> A(T &&); // #3 }; struct B : A { using A::A; B(const B &); // #4 B(B &&) = default; // #5, implicitly deleted struct X { X(X &&) = delete; } x; }; extern B b1; B b2 = static_cast<B&&>(b1); // calls #4: #1 is not viable, #2, #3, and #5 are not candidates struct C { operator B&&(); }; B b3 = C(); // calls #4— end example
int f1(int); int f2(float); typedef int (*fp1)(int); typedef int (*fp2)(float); struct A { operator fp1() { return f1; } operator fp2() { return f2; } } a; int i = a(1); // calls f1 via pointer returned from conversion function— end example
struct String { String (const String&); String (const char*); operator const char* (); }; String operator + (const String&, const String&); void f() { const char* p= "one" + "two"; // error: cannot add two pointers; overloaded operator+ not considered // because neither operand has class or enumeration type int I = 1 + 1; // always evaluates to 2 even if class or enumeration types exist // that would perform the operation. }— end example
Subclause | Expression | As member function | As non-member function |
@a | |||
a@b | |||
a=b | |||
a[b] | |||
a-> | |||
a@ |
struct X { operator double(); }; struct Y { operator int*(); }; int *a = Y() + 100.0; // error: pointer arithmetic requires integral operand int *b = Y() + X(); // error: pointer arithmetic requires integral operand— end example
struct A { }; void operator + (A, A); struct B { void operator + (B); void f (); }; A a; void B::f() { operator+ (a,a); // error: global operator hidden by member a + a; // OK: calls global operator+ }— end note
template <typename> class AA;with a single partial specialization whose template parameter list is that of A and whose template argument list is a specialization of A with the template argument list of A ([temp.dep.type]), AA<T> matches the partial specialization.
template <class T> struct A { explicit A(const T&, ...) noexcept; // #1 A(T&&, ...); // #2 }; int i; A a1 = { i, i }; // error: explicit constructor #1 selected in copy-list-initialization during deduction, // cannot deduce from non-forwarding rvalue reference in #2 A a2{i, i}; // OK, #1 deduces to A<int> and also initializes A a3{0, i}; // OK, #2 deduces to A<int> and also initializes A a4 = {0, i}; // OK, #2 deduces to A<int> and also initializes template <class T> A(const T&, const T&) -> A<T&>; // #3 template <class T> explicit A(T&&, T&&) -> A<T>; // #4 A a5 = {0, 1}; // error: explicit deduction guide #4 selected in copy-list-initialization during deduction A a6{0,1}; // OK, #4 deduces to A<int> and #2 initializes A a7 = {0, i}; // error: #3 deduces to A<int&>, #1 and #2 declare same constructor A a8{0,i}; // error: #3 deduces to A<int&>, #1 and #2 declare same constructor template <class T> struct B { template <class U> using TA = T; template <class U> B(U, TA<U>); }; B b{(int*)0, (char*)0}; // OK, deduces B<char*> template <typename T> struct S { T x; T y; }; template <typename T> struct C { S<T> s; T t; }; template <typename T> struct D { S<int> s; T t; }; C c1 = {1, 2}; // error: deduction failed C c2 = {1, 2, 3}; // error: deduction failed C c3 = {{1u, 2u}, 3}; // OK, deduces C<int> D d1 = {1, 2}; // error: deduction failed D d2 = {1, 2, 3}; // OK, braces elided, deduces D<int> template <typename T> struct E { T t; decltype(t) t2; }; E e1 = {1, 2}; // OK, deduces E<int> template <typename... T> struct Types {}; template <typename... T> struct F : Types<T...>, T... {}; struct X {}; struct Y {}; struct Z {}; struct W { operator Y(); }; F f1 = {Types<X, Y, Z>{}, {}, {}}; // OK, F<X, Y, Z> deduced F f2 = {Types<X, Y, Z>{}, X{}, Y{}}; // OK, F<X, Y, Z> deduced F f3 = {Types<X, Y, Z>{}, X{}, W{}}; // error: conflicting types deduced; operator Y not considered— end example
template <class T, class U> struct C { C(T, U); // #1 }; template<class T, class U> C(T, U) -> C<T, std::type_identity_t<U>>; // #2 template<class V> using A = C<V *, V *>; template<std::integral W> using B = A<W>; int i{}; double d{}; A a1(&i, &i); // deduces A<int> A a2(i, i); // error: cannot deduce V * from i A a3(&i, &d); // error: #1: cannot deduce (V*, V*) from (int *, double *) // #2: cannot deduce A<V> from C<int *, double *> B b1(&i, &i); // deduces B<int> B b2(&d, &d); // error: cannot deduce B<W> from C<double *, double *>
// The following concept ensures a specialization of A is deduced. template <class> class AA; template <class V> class AA<A<V>> { }; template <class T> concept deduces_A = requires { sizeof(AA<T>); }; // f1 is formed from the constructor #1 of C, generating the following function template template<T, U> auto f1(T, U) -> C<T, U>; // Deducing arguments for C<T, U> from C<V *, V*> deduces T as V * and U as V *; // f1' is obtained by transforming f1 as described by the above procedure. template<class V> requires deduces_A<C<V *, V *>> auto f1_prime(V *, V*) -> C<V *, V *>; // f2 is formed from the deduction-guide #2 of C template<class T, class U> auto f2(T, U) -> C<T, std::type_identity_t<U>>; // Deducing arguments for C<T, std::type_identity_t<U>> from C<V *, V*> deduces T as V *; // f2' is obtained by transforming f2 as described by the above procedure. template<class V, class U> requires deduces_A<C<V *, std::type_identity_t<U>>> auto f2_prime(V *, U) -> C<V *, std::type_identity_t<U>>; // The following concept ensures a specialization of B is deduced. template <class> class BB; template <class V> class BB<B<V>> { }; template <class T> concept deduces_B = requires { sizeof(BB<T>); }; // The guides for B derived from the above f1' and f2' for A are as follows: template<std::integral W> requires deduces_A<C<W *, W *>> && deduces_B<C<W *, W *>> auto f1_prime_for_B(W *, W *) -> C<W *, W *>; template<std::integral W, class U> requires deduces_A<C<W *, std::type_identity_t<U>>> && deduces_B<C<W *, std::type_identity_t<U>>> auto f2_prime_for_B(W *, U) -> C<W *, std::type_identity_t<U>>;
struct A { A(); operator int(); operator double(); } a; int i = a; // a.operator int() followed by no conversion is better than // a.operator double() followed by a conversion to int float x = a; // ambiguous: both possibilities require conversions, // and neither is better than the other— end example
template <class T> struct A { operator T&(); // #1 operator T&&(); // #2 }; typedef int Fn(); A<Fn> a; Fn& lf = a; // calls #1 Fn&& rf = a; // calls #2— end example
struct A { A(int = 0); }; struct B: A { using A::A; B(); }; int main() { B b; // OK, B::B() }— end example
struct S { friend auto operator<=>(const S&, const S&) = default; // #1 friend bool operator<(const S&, const S&); // #2 }; bool b = S() < S(); // calls #2— end example
struct S { friend std::weak_ordering operator<=>(const S&, int); // #1 friend std::weak_ordering operator<=>(int, const S&); // #2 }; bool b = 1 < S(); // calls #2— end example
template <class T> struct A { using value_type = T; A(value_type); // #1 A(const A&); // #2 A(T, T, int); // #3 template<class U> A(int, T, U); // #4 // #5 is the copy deduction candidate, A(A) }; A x(1, 2, 3); // uses #3, generated from a non-template constructor template <class T> A(T) -> A<T>; // #6, less specialized than #5 A a(42); // uses #6 to deduce A<int> and #1 to initialize A b = a; // uses #5 to deduce A<int> and #2 to initialize template <class T> A(A<T>) -> A<A<T>>; // #7, as specialized as #5 A b2 = a; // uses #7 to deduce A<A<int>> and #1 to initialize— end example
void Fcn(const int*, short); void Fcn(int*, int); int i; short s = 0; void f() { Fcn(&i, s); // is ambiguous because &i → int* is better than &i → const int* // but s → short is also better than s → int Fcn(&i, 1L); // calls Fcn(int*, int), because &i → int* is better than &i → const int* // and 1L → short and 1L → int are indistinguishable Fcn(&i, 'c'); // calls Fcn(int*, int), because &i → int* is better than &i → const int* // and c → int is better than c → short }— end example
namespace A { extern "C" void f(int = 5); } namespace B { extern "C" void f(int = 5); } using A::f; using B::f; void use() { f(3); // OK, default argument was not used for viability f(); // error: found default argument twice }— end example
class B; class A { A (B&);}; class B { operator A (); }; class C { C (B&); }; void f(A) { } void f(C) { } B b; f(b); // error: ambiguous because there is a conversion b → C (via constructor) // and an (ambiguous) conversion b → A (via constructor or conversion function) void f(B) { } f(b); // OK, unambiguous— end example
Conversion | Category | Rank | Subclause |
No conversions required | Identity | ||
Lvalue-to-rvalue conversion | |||
Array-to-pointer conversion | Lvalue Transformation | ||
Function-to-pointer conversion | Exact Match | ||
Qualification conversions | |||
Function pointer conversion | Qualification Adjustment | ||
Integral promotions | |||
Floating-point promotion | Promotion | Promotion | |
Integral conversions | |||
Floating-point conversions | |||
Floating-integral conversions | |||
Pointer conversions | Conversion | Conversion | |
Pointer-to-member conversions | |||
Boolean conversions |
struct A {}; struct B : public A {} b; int f(A&); int f(B&); int i = f(b); // calls f(B&), an exact match, rather than f(A&), a conversion— end example
struct A { int x, y; }; struct B { int y, x; }; void f(A a, int); // #1 void f(B b, ...); // #2 void g(A a); // #3 void g(B b); // #4 void h() { f({.x = 1, .y = 2}, 0); // OK; calls #1 f({.y = 2, .x = 1}, 0); // error: selects #1, initialization of a fails // due to non-matching member order ([dcl.init.list]) g({.x = 1, .y = 2}); // error: ambiguous between #3 and #4 }— end example
void f(std::initializer_list<int>); f( {} ); // OK: f(initializer_list<int>) identity conversion f( {1,2,3} ); // OK: f(initializer_list<int>) identity conversion f( {'a','b'} ); // OK: f(initializer_list<int>) integral promotion f( {1.0} ); // error: narrowing struct A { A(std::initializer_list<double>); // #1 A(std::initializer_list<complex<double>>); // #2 A(std::initializer_list<std::string>); // #3 }; A a{ 1.0,2.0 }; // OK, uses #1 void g(A); g({ "foo", "bar" }); // OK, uses #3 typedef int IA[3]; void h(const IA&); h({ 1, 2, 3 }); // OK: identity conversion— end example
struct A { A(std::initializer_list<int>); }; void f(A); f( {'a', 'b'} ); // OK: f(A(std::initializer_list<int>)) user-defined conversion struct B { B(int, double); }; void g(B); g( {'a', 'b'} ); // OK: g(B(int, double)) user-defined conversion g( {1.0, 1.0} ); // error: narrowing void f(B); f( {'a', 'b'} ); // error: ambiguous f(A) or f(B) struct C { C(std::string); }; void h(C); h({"foo"}); // OK: h(C(std::string("foo"))) struct D { D(A, C); }; void i(D); i({ {1,2}, {"bar"} }); // OK: i(D(A(std::initializer_list<int>{1,2}), C(std::string("bar"))))— end example
struct A { int m1; double m2; }; void f(A); f( {'a', 'b'} ); // OK: f(A(int,double)) user-defined conversion f( {1.0} ); // error: narrowing— end example
struct A { int m1; double m2; }; void f(const A&); f( {'a', 'b'} ); // OK: f(A(int,double)) user-defined conversion f( {1.0} ); // error: narrowing void g(const double &); g({1}); // same conversion as int to double— end example
void f(int); f( {'a'} ); // OK: same conversion as char to int f( {1.0} ); // error: narrowing— end example
void f(int); f( { } ); // OK: identity conversion— end example
void f1(int); // #1 void f1(std::initializer_list<long>); // #2 void g1() { f1({42}); } // chooses #2 void f2(std::pair<const char*, const char*>); // #3 void f2(std::initializer_list<std::string>); // #4 void g2() { f2({"foo","bar"}); } // chooses #4— end example
void f(int (&&)[] ); // #1 void f(double (&&)[] ); // #2 void f(int (&&)[2]); // #3 f( {1} ); // Calls #1: Better than #2 due to conversion, better than #3 due to bounds f( {1.0} ); // Calls #2: Identity conversion is better than floating-integral conversion f( {1.0, 2.0} ); // Calls #2: Identity conversion is better than floating-integral conversion f( {1, 2} ); // Calls #3: Converting to array of known bound is better than to unknown bound, // and an identity conversion is better than floating-integral conversion— end example
int i; int f1(); int&& f2(); int g(const int&); int g(const int&&); int j = g(i); // calls g(const int&) int k = g(f1()); // calls g(const int&&) int l = g(f2()); // calls g(const int&&) struct A { A& operator<<(int); void p() &; void p() &&; }; A& operator<<(A&&, char); A() << 1; // calls A::operator<<(int) A() << 'c'; // calls operator<<(A&&, char) A a; a << 1; // calls A::operator<<(int) a << 'c'; // calls A::operator<<(int) A().p(); // calls A::p()&& a.p(); // calls A::p()&— end example
int f(void(&)()); // #1 int f(void(&&)()); // #2 void g(); int i1 = f(g); // calls #1— end example
int f(const volatile int *); int f(const int *); int i; int j = f(&i); // calls f(const int*)— end example
int f(const int &); int f(int &); int g(const int &); int g(int); int i; int j = f(i); // calls f(int &) int k = g(i); // ambiguous struct X { void f() const; void f(); }; void g(const X& a, X b) { a.f(); // calls X::f() const b.f(); // calls X::f() }— end example
struct A { operator short(); } a; int f(int); int f(float); int i = f(a); // calls f(int), because short → int is // better than short → float.— end example
struct A {}; struct B : public A {}; struct C : public B {}; C* pc; int f(A*); int f(B*); int i = f(pc); // calls f(B*)— end example
int f(double); int f(int); int (*pfd)(double) = &f; // selects f(double) int (*pfi)(int) = &f; // selects f(int) int (*pfe)(...) = &f; // error: type mismatch int (&rfi)(int) = f; // selects f(int) int (&rfd)(double) = f; // selects f(double) void g() { (int (*)(int))&f; // cast expression as selector }
struct X { int f(int); static int f(long); }; int (X::*p1)(int) = &X::f; // OK int (*p2)(int) = &X::f; // error: mismatch int (*p3)(long) = &X::f; // OK int (X::*p4)(long) = &X::f; // error: mismatch int (X::*p5)(int) = &(X::f); // error: wrong syntax for // pointer to member int (*p6)(long) = &(X::f); // OK— end example
complex z = a.operator+(b); // complex z = a+b; void* p = operator new(sizeof(int)*n);— end example
struct B { virtual int operator= (int); virtual B& operator= (const B&); }; struct D : B { virtual int operator= (int); virtual D& operator= (const B&); }; D dobj1; D dobj2; B* bptr = &dobj1; void f() { bptr->operator=(99); // calls D::operator=(int) *bptr = 99; // ditto bptr->operator=(dobj2); // calls D::operator=(const B&) *bptr = dobj2; // ditto dobj1 = dobj2; // calls implicitly-declared D::operator=(const D&) }— end example
struct X { X& operator++(); // prefix ++a X operator++(int); // postfix a++ }; struct Y { }; Y& operator++(Y&); // prefix ++b Y operator++(Y&, int); // postfix b++ void f(X a, Y b) { ++a; // a.operator++(); a++; // a.operator++(0); ++b; // operator++(b); b++; // operator++(b, 0); a.operator++(); // explicit call: like ++a; a.operator++(0); // explicit call: like a++; operator++(b); // explicit call: like ++b; operator++(b, 0); // explicit call: like b++; }— end example
vq T& operator++(vq T&); T operator++(vq T&, int);
vq T& operator--(vq T&); T operator--(vq T&, int);
T*vq& operator++(T*vq&); T*vq& operator--(T*vq&); T* operator++(T*vq&, int); T* operator--(T*vq&, int);
T& operator*(T*);
T& operator*(T*);
T operator+(T); T operator-(T);
T operator~(T);
cv12 T& operator->*(cv1 C1*, cv2 T C2::*);where cv12 is the union of cv1 and cv2.
LR operator*(L, R); LR operator/(L, R); LR operator+(L, R); LR operator-(L, R); bool operator==(L, R); bool operator!=(L, R); bool operator<(L, R); bool operator>(L, R); bool operator<=(L, R); bool operator>=(L, R);where LR is the result of the usual arithmetic conversions ([expr.arith.conv]) between types L and R.
std::strong_ordering operator<=>(T, T);
std::partial_ordering operator<=>(L, R);
T* operator+(T*, std::ptrdiff_t); T& operator[](T*, std::ptrdiff_t); T* operator-(T*, std::ptrdiff_t); T* operator+(std::ptrdiff_t, T*); T& operator[](std::ptrdiff_t, T*);
std::ptrdiff_t operator-(T, T);
bool operator==(T, T); bool operator!=(T, T); bool operator<(T, T); bool operator>(T, T); bool operator<=(T, T); bool operator>=(T, T); R operator<=>(T, T);where R is the result type specified in [expr.spaceship].
bool operator==(T, T); bool operator!=(T, T);
LR operator%(L, R); LR operator&(L, R); LR operator^(L, R); LR operator|(L, R); L operator<<(L, R); L operator>>(L, R);where LR is the result of the usual arithmetic conversions ([expr.arith.conv]) between types L and R.
vq L& operator=(vq L&, R); vq L& operator*=(vq L&, R); vq L& operator/=(vq L&, R); vq L& operator+=(vq L&, R); vq L& operator-=(vq L&, R);
T*vq& operator=(T*vq&, T*);
vq T& operator=(vq T&, T);
T*vq& operator+=(T*vq&, std::ptrdiff_t); T*vq& operator-=(T*vq&, std::ptrdiff_t);
vq L& operator%=(vq L&, R); vq L& operator<<=(vq L&, R); vq L& operator>>=(vq L&, R); vq L& operator&=(vq L&, R); vq L& operator^=(vq L&, R); vq L& operator|=(vq L&, R);
bool operator!(bool); bool operator&&(bool, bool); bool operator||(bool, bool);
LR operator?:(bool, L, R);where LR is the result of the usual arithmetic conversions ([expr.arith.conv]) between types L and R.
const char* unsigned long long int long double char wchar_t char8_t char16_t char32_t const char*, std::size_t const wchar_t*, std::size_t const char8_t*, std::size_t const char16_t*, std::size_t const char32_t*, std::size_t
void operator "" _km(long double); // OK string operator "" _i18n(const char*, std::size_t); // OK template <char...> double operator "" _\u03C0(); // OK: UCN for lowercase pi float operator ""_e(const char*); // OK float operator ""E(const char*); // error: reserved literal suffix ([usrlit.suffix], [lex.ext]) double operator""_Bq(long double); // OK: does not use the reserved identifier _Bq ([lex.name]) double operator"" _Bq(long double); // uses the reserved identifier _Bq ([lex.name]) float operator " " B(const char*); // error: non-empty string-literal string operator "" 5X(const char*, std::size_t); // error: invalid literal suffix identifier double operator "" _miles(double); // error: invalid parameter-declaration-clause template <char...> int operator "" _j(const char*); // error: invalid parameter-declaration-clause extern "C" void operator "" _m(long double); // error: C language linkage— end example